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Introduction

• Numerical simulations of fluid flow problems are computationally intensive

• Current CFD solvers do not exploit full computational resources (both CPUs and

GPUs)

• Need a CFD code that can fully exploit heterogeneous platforms

• For example: SU2 uses CPUs, OpenFOAM uses CPUs or GPUs (not both)

• Current CFD solvers are explicitly parallel

• It will be advantageous if the code is implicitly parallel

Objective: Develop an implicitly parallel meshfree solver in Regent
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Meshfree q-LSKUM Solver for 2D Euler Equations

Least Squares Kinetic Upwind Method (LSKUM):

• Euler equations: Govern the inviscid compressible fluid flows
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• Introduce upwinding using Kinetic Flux Vector Splitting (KFVS) (Mandal-1994)
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• Basic idea of LSKUM: Approximate the spatial derivatives using Least Squares

• Input: Set of points and their neighbours (known as connectivity)

• Operates on structured, unstructured, cartesian, chimera point distributions, etc.

• Higher-order accuracy in space: Using q-variables (q-LSKUM) (Deshpande-2002)

• Time accuracy: Strong Stability Preserving Runge-Kutta Schemes (SSP-RK3)
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Pseudo Code

Algorithm 1: Meshfree solver based on q-LSKUM

subroutine q-LSKUM
call preprocessor()

for n← 1 to n ≤ N do
call timestep()

for rk ← 1 to 4 do
call q variables()

call q derivatives()

call flux residual()

call state update(rk)

end

call residue()
end

call postprocessor()
end subroutine
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Regent Implementation of the Solver

Regent’s Data Model

• Regions are the primary unit of Re-

gent’s data model

• Partitions (array of subregions) help ex-

pose data parallelism in an application

• Regent has an expressive framework for

defining partitions

Domain Decomposition

• Point distribution is partitioned into

subregions of local and ghost points

• Employed METIS for partitioning (Op-

tional, but important for performance)
Decomposition of a NACA 0012 airfoil
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Regent Implementation of the Solver

Decomposition of a NACA 0012 airfoil Region
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Regent Implementation of the Solver

Regent Tasks

• Tasks receive regions as input and

declare privileges on them (RO, WO,

RW)

• Task dependencies are inferred

automatically

• Compiler, runtime (Legion) extract

parallelism

• Tasks execute after their dependencies

are satisfied
Regent task declaration for state-update()
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Regent Implementation of the Solver

Data Communication

• No user-written data communication

code

• All data copies inserted automatically

to maintain correctness

Regent code for q-LSKUM
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Regent Implementation of the Solver

Regent Specific Optimizations:

• Index launches: Amortizes the analysis cost of a loop that launches tasks

• Dynamic Control Replication: An optimization technique for scalability

(Slaughter-SC17)

• OpenMP code generation: Converts serial loops to OpenMP style loops

• Mapper customization: To disable load balancing for better performance on

AMD nodes
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Numerical Results

Test Case Details:

• Inviscid flow over a NACA 0012 airfoil

• Ma = 0.85 and AoA = 1o

• Five levels of point distributions: 0.8M to 40M

Language Specifications

• Regent, Fortran 90 and Julia 1.5.1

Node Configuration

• AMD EPYCTM 7542 (32x2) with 256 GB RAM

• Mellanox EDR 100 Gbps Interconnect
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Numerical Results: Performance on a single node

No. of points Regent Regent + OpenMP Fortran Julia

RDP × 10−7 (Lower is better)

804, 824 9.9266 6.8145 4.3367 48.2093

2, 642, 264 4.8180 6.4662 4.0788 31.8098

9, 992, 000 3.7195 6.2460 3.8406 22.2528

25, 330, 172 3.3717 6.6212 3.7374 17.5542

39, 381, 464 2.8772 5.9714 3.6717 15.0160

Table: Comparison of RDP values on a single node.

• RDP = Total wall clock time in seconds/No. of iterations/No. of points

• Number of iterations = 1000
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Numerical Results: Performance on a single node

Comparison of relative RDP on a single node:
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Numerical Results: Performance on multiple nodes

Nodes Regent + OpenMP Fortran Julia

RDP values (Lower is better)

1 5.9714× 10−7 3.6717× 10−7 1.5016× 10−6

2 3.2912× 10−7 1.7886× 10−7 1.1356× 10−6

3 2.8706× 10−7 1.2845× 10−7 8.0546× 10−7

4 2.2686× 10−7 9.5952× 10−8 6.8814× 10−7

5 1.8809× 10−7 8.1205× 10−8 6.3482× 10−7

6 1.8947× 10−7 6.9134× 10−8 5.9520× 10−7

7 1.6165× 10−7 5.9616× 10−8 5.6575× 10−7

8 1.5186× 10−7 4.9933× 10−8 5.5204× 10−7

Table: Comparison of RDP values on multiple nodes.
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Numerical Results: Performance on multiple nodes

Comparison of the slowdown factor on the finest point distribution:
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Numerical Results: Performance on multiple nodes
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Conclusions & Future Work

Conclusions:

• Developed an implicitly parallel meshfree q-LSKUM solver based on Regent

• On a single node for fine point distributions, Regent exhibited superior performance

Future Work:

• Working on enhancing the computational efficiency of Regent on multi-node clusters

• Extending the solver to three-dimensional compressible flows

• Constructing a truly hybrid solver based on Regent, which can exploit the full computational

potential on heterogeneous platforms

Thank you very much!
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