Performance Analysis of GPU Accelerated Meshfree Solvers in

Fortran, C, Python, and Julia

Nischay Ram Mamidi¹, Dhruv Saxena¹, Kumar Prasun², Anil Nemili¹ Bharatkumar Sharma³, SM Deshpande⁴

¹Birla Institute of Technology and Science - Pilani, Hyderabad Campus, India ²Courant Institute of Mathematical Sciences, New York, 10012, USA ³NVIDIA

⁴524, Tata Nagar, Bengaluru, India (Formerly at JNCASR, Bengaluru)

NVAITC Presentation Global 2022

March 31, 2022

GPU Accelerated Meshfree Solver	Numerical Results	Conclusions & Future Work

Outline

Introduction

GPU Accelerated Meshfree Solver

Numerical Results

Conclusions & Future Work

Introduction	GPU Accelerated Meshfree Solver	Numerical Results	Conclusions & Future W
0000			

ork

Introduction

- Numerical simulation of fluid flow problems involving multi body configurations is computationally expensive
- Such simulations require solving the Euler/Naiver-Stokes equations on grids ranging from a few million to several billion grid points
- To perform these calculations, the CFD parallel codes use CPUs or CPU-GPUs
- · GPUs: Alternative to CPUs in performance, cost, and energy
- GPUs consistently outperform CPUs in SIMD calculations
- Several CFD groups have developed GPU codes using Fortran/C/C++

Introduction	GPU Accelerated Meshfree Solver	Numerical Results	Conclusions & Future Work
0000			

Introduction

Modern languages such as Python, Julia, Regent, and Chapel have steadily risen in scientific computing

Advantages:

- Architecture Independent
- · Easy to maintain, high code readability, few lines of code
- · New developers can quickly join and work on the code

Implicit parallelism:

- Regent and Chapel support implicit parallelism
- Task division and data synchronisation are performed automatically

Examples of Petascale parallel codes:

- PyFR A compressible Navier-Stokes solver for unstructured grids (Witherden-2014)
- Celeste An astronomical image analysis tool (Regier-2018)

Objective of this research

- A rigorous investigation and comparison of the GPU codes in traditional and modern languages has not yet been pursued
- In this research we present an analysis of GPU codes for 2D Euler equations
- The CFD solver is based on the meshfree q-LSKUM (Ghosh-1995, Deshpande-2002)
- Traditional languages: Fortran and C
- Modern languages: Python and Julia
- The programming model CUDA is used to construct the GPU solvers
- To investigate how the ecosystem of these languages has evolved

Objective of this research

- · Acceleration of CFD codes starts with the implementation of the baseline code
- · Baseline codes may not be computationally efficient
- Reasons: Poor memory access patterns, kernel launch configurations, size of the kernels, and redundant floating-point operation sequences
- To optimise the codes, baseline codes are profiled
- Profilers provide a guided analysis to understand the utilisation of the hardware
- Profiled data can be used to analyse performance metrics and identify bottlenecks
- Resolving these issues can enhance the computational efficiency
- This research highlights the importance of profiling and the cycle of analysis and optimisation

Meshfree q-LSKUM Solver for 2D Euler Equations

Least Squares Kinetic Upwind Method (LSKUM):

· Euler equations: Govern the inviscid compressible fluid flows

$$\frac{\partial \boldsymbol{U}}{\partial t} + \frac{\partial \boldsymbol{G}}{\partial x} + \frac{\partial \boldsymbol{H}}{\partial y} = 0$$

• Introduce upwinding using Kinetic Flux Vector Splitting (KFVS) (Mandal-1989)

$$\frac{\partial U}{\partial t} + \frac{\partial G^+}{\partial x} + \frac{\partial G^-}{\partial x} + \frac{\partial H^+}{\partial y} + \frac{\partial H^-}{\partial y} = 0$$

- Basic idea of LSKUM: Approximate the spatial derivatives using Least Squares (Ghosh-1995)
- Input: Set of points and their neighbours (known as connectivity)
- Operates on structured, unstructured, cartesian, chimera point distributions, etc.
- Spatial accuracy: Using defect correction method + inner iterations, along with *q*-variables (q-LSKUM) (Deshpande-2002)
- Time accuracy: Strong Stability Preserving Runge-Kutta Schemes (SSP-RK3)

Serial Pseudo Code

Algorithm 1: Serial meshfree solver based on q-LSKUM

```
subroutine q-LSKUM
```

```
\begin{tabular}{|c|c|c|c|} \hline call & preprocessor() \\ \hline for $n \leftarrow 1$ to $n \le N$ do \\ call $timestep()$ \\ for $rk \leftarrow 1$ to 4$ do \\ call $q_variables()$ \\ call $q_variables()$ \\ call $q_variables()$ \\ call $q_variables()$ \\ call $flux_residual()$ \\ call $flux_residual()$ \\ call $residue(rk)$ \\ end \\ call $residue()$ \\ end \\ call $postprocessor()$ \\ end $subroutine$ \\ \hline end $subroutine$ \\
```


GPU Accelerated Pseudo Code (Baseline)

Algorithm 2: GPU accelerated meshfree solver based on q-LSKUM

```
subroutine q_LSKUM:
```

```
call preprocessor()
    cudaHostToDevice(CPU_data, GPU_data)
    for n \leftarrow 1 to n < N do
        kernel ≪ grid, block ≫ timestep()
        for rk \leftarrow 1 to 4 do
             kernel <</li>grid, block >>>> q_variables()
             kernel \ll grid, block \gg g_derivatives()
             kernel 《 grid, block 》 flux_residual()
             kernel \ll grid, block \gg state_update(rk)
        end
        reduction residue()
    end
    cudaDeviceToHost(GPU_data, CPU_data)
    call postprocessor()
end subroutine
```


Test case details:

- Inviscid flow over a NACA 0012 airfoil
- M = 0.63 and $AoA = 2^o$
- Seven levels of point distributions: $0.625 \mbox{M}$ to $40 \mbox{M}$

Language versions and compiler specifications:

- Fortran 90, C NVIDIA HPC SDK 21.2
- Python 3.9.1 Numba 0.55.0 and CUDA Toolkit 11.2.2
- Julia 1.5.3 CUDA.jl 2.4.1

Hardware configuration:

- Serial runs: AMD EPYCTM 7542 (2x32 cores) with 256 GB RAM
- GPU runs: NVIDIA Tesla V100 32GB (PCle)

GPU Accelerated Meshfree Solver

Numerical Results

Performance of the baseline GPU codes

Level	No. of points	Fortran	С	Python	Julia
	RDP :	$\times 10^{-8}$ (Lo	wer is bette	er)	
1	0.625M	14.4090	5.1200	9.4183	7.3120
2	1.25M	12.8570	4.8800	8.9765	6.2160
3	2.5M	11.9100	4.6000	8.7008	5.4800
4	5M	11.5620	4.6673	8.6080	5.2800
5	10M	11.3640	4.5800	8.6409	5.0600
6	20M	11.3130	4.4096	7.9278	4.9650
7	40M	12.2720	4.2573	7.8805	4.9350

Comparison of the RDP values based on baseline GPU codes

- RDP = Total wall clock time in seconds/No. of iterations/No. of points
- Number of iterations = 1000
- For Fortran, Python, and Julia lowest RDP is achieved with 64 threads per block. For C this value is 128

GPU Accelerated Meshfree Solver

Numerical Results

Conclusions & Future Work

Performance of the baseline GPU codes

Relative Speedup of the GPU codes

- Speedup of the GPU codes = (RDP of the optimised serial C code) / (RDP of the GPU codes)
- Relative speedup = (RDP of the Fortran GPU code) / (RDP of C/Python/Julia GPU codes)

-

Numerical Results

Baseline GPU codes: Relative run-time of the Kernels

No.of points	Code	q_variables	q_derivatives	flux_residual	state_update
	Fortran	0.50%	25.73%	72.67%	0.82%
0.625M	С	0.77%	44.70%	50.51%	1.87%
Coarse	Python	0.67%	37.48%	59.73%	1.47%
	Julia	1.24%	24.52%	71.71%	1.89%
	Fortran	0.42%	25.60%	72.95%	0.74%
5M	С	0.80%	47.34%	47.68%	1.84%
Medium	Python	0.60%	38.43%	59.10%	1.38%
	Julia	1.37%	24.40%	71.77%	1.85%
	Fortran	0.41%	25.38%	73.21%	0.74%
40M	С	0.81%	42.27%	52.94%	1.85%
Fine	Python	0.58%	38.19%	59.40%	1.35%
	Julia	1.32%	24.12%	72.11%	1.85%

Run-time analysis of the kernels

• Relative run-time of a kernel = (Kernel execution time) / (Overall time taken)

Baseline GPU codes: Performance metrics of the kernel - flux_residual

Points	Code	SM utilisation	Memory utilisation	Achieved occupancy	Registers per thread		
		sho	shown in percentage				
	Fortran	11.56	21.27	3.08	220		
0.625 M	С	43.16	10.41	11.76	184		
Coarse	Python	29.55	25.95	18.03	128		
	Julia	26.23	18.28	16.54	152		
	Fortran	11.68	21.49	3.10	220		
40M	C	43.58	9.15	12.03	184		
Fine	Python	30.31	26.58	18.33	128		
	Julia	27.10	18.24	16.76	152		

- SM utilisation: Total utilisation of compute sub-systems (memory load/store operations, arithmetic and logic operations)
- Achieved occupancy: Total number of running warps / The theoretical maximum warps

GPU Accelerated Meshfree Solver

Numerical Results

Conclusions & Future Work

Baseline GPU codes: Roofline Analysis

Roofline Model

- Shows a kernel's arithmetic intensity with its achievable performance
- Arithmetic intensity is defined as the number of FLOPs per byte of data movement
- Achieved performance is measured in TFLOPs
- A code with performance closer to the peak boundary uses the GPU resources optimally

Roofline analysis of the flux_residual kernel

GPU Accelerated Meshfree Solver

Numerical Results

Conclusions & Future Work

Baseline GPU codes: Roofline Analysis

Roofline Model

- Shows a kernel's arithmetic intensity with its achievable performance
- Arithmetic intensity is defined as the number of FLOPs per byte of data movement
- Achieved performance is measured in TFLOPs
- A code with performance closer to the peak boundary uses the GPU resources optimally

Roofline analysis of the flux_residual kernel

To investigate the difference in arithmetic intensity of Python and Julia codes we analyse the scheduler and warp state statistics

Baseline GPU codes: Scheduler State Statistics

- A warp is a collection of 32 threads executed simultaneously by an SM
- These warps are executed on the SM via a scheduler
- · Scheduler states: GPU maximum warps, active, eligible, and issued warps
- GPU maximum warps: Maximum warps that can be issued per scheduler (For V100 it is 16)
- Active warps: Warps for which resources are allocated (Ex: registers, shared memory)
- · Eligible warps: Subset of active warps that are not stalled
- · Issued warps: Subset of eligible warps for which instructions are executed
- Note: Active warps = Eligible warps + Stalled warps

Baseline GPU codes: Scheduler State Statistics

Points	Code	Active	Eligible	Issued	Eligible warps
		warp	s per scheo	duler	in percentage
40M	С	1.93	0.24	0.21	12.43%
Fine	Python	2.93	0.37	0.30	12.62%
	Julia	2.69	0.24	0.20	8.92%

A comparison of scheduler statistics on the finest level of point distribution

To understand the low number of eligible warps we investigate the warp state statistics

Baseline GPU codes: Warp State Statistics

- There are several states for which warp stalls can occur
- In the present work, warp stalls due to no instruction, wait, and long scoreboards are dominant
- · No instruction: Occurs when a warp is waiting to get selected to execute the next instruction
- · It can also happen due to instruction cache miss
- Wait: Warp stalls if it is waiting for a fixed latency execution dependencies (Ex: FMA, ALU)
- Long scoreboard: Occurs when a warp waits for the data from L1TEX (Ex: local / global memory units)

Baseline GPU codes: Warp State Statistics

Points	Code	Stall in warp execution (in cycles) due to				
		no instruction	wait	long scoreboard		
40M	С	2.96	3.12	0.87		
Fine	Python	4.94	2.14	0.66		
	Julia	5.4	2.6	3.10		

A comparison of warp state statistics on the finest level of point distribution

Baseline GPU codes: Warp State Statistics

Points	Code	Stall in warp execution (in cycles) due to				
		no instruction	wait	long scoreboard		
40M	С	2.96	3.12	0.87		
Fine	Python	4.94	2.14	0.66		
	Julia	5.4	2.6	3.10		

A comparison of warp state statistics on the finest level of point distribution

- These metrics did not reveal any conclusive evidence regarding the poor performance of Python over Julia
- · To further analyse, we investigate the memory access patterns and pipe utilisation

Baseline GPU codes: Global Memory Access Patterns

Code	Global L	oad	Global Store		
	Sectors	Sectors per request	Sectors	Sectors per request	
С	3,789,109,860	10.63	43,749,721	8.75	
Python	14,637,012,265	26.92	159,999,732	32.00	
Julia	7,884,258,310	7.41	40,000,000	8.00	

A comparison of global load and store metrics on the finest level of point distribution

- · Global load: Operations which retrieve data from the global memory
- · Global store: Operations which store data in the global memory
- Sector: An aligned 32 byte-chunk of global memory
- · Sectors per request: The average ratio of sectors to the number of load / store operations

Baseline GPU codes: Shared Memory Access Patterns

Points	Code	Shared memory bank conflicts due to		
		load operations	store operations	
40M	Python	3,824,672	107, 628, 065	
	Julia	4,413,868	0	

A comparison of shared memory bank conflicts due to load and store operations

· Bank conflict occurs when multiple threads in a warp access the same memory bank

Baseline GPU codes: Pipeline Utilisation

Points	Code	FP64	FMA	ALU	LSU
	С	43.63	6.58	5.87	1.78
40M	Python	28.67	14.28	21.24	8.05
	Julia	27.09	9.41	9.43	7.97

A comparison of pipe utilisation of the streaming multiprocessor (SM)

Points	Code	DFMA	IMAD	DMUL	IADD3	DADD
		Instructions presented in Billions				
	С	6.1262	2.7451	2.0509	0.9514	1.4174
40M	Python	8.2769	14.1171	2.3879	4.1338	3.1966
	Julia	6.3009	6.8711	2.2617	2.6878	1.4201

A comparison of various instructions executed by an SM

Baseline GPU codes: Summary

Summary on the performance of baseline GPU codes:

- The C code with better utilisation of SM has the lowest RDP
- · Fortran code with very low occupancy has the highest RDP
- Python code has better SM utilisation and achieved occupancy
- However, it suffers from global memory coalescing, shared memory bank conflicts, excessive utilisation of FMA and ALU pipelines
- Due to this the RDP of Python is significantly higher than Julia

Enhancing the Computational Efficiency of GPU Codes

Optimisation techniques employed:

- · For baseline codes the register usage of the kernel flux_residual is very high
- This indicates that the size of the kernel is too large
- This kernel is split into smaller kernels that compute the spatial derivatives of Gx^\pm , Gy^\pm
- · This resulted in reduced register pressure and thus increased occupancy
- Kernel splitting also reduced the warp stalls and increased the overall memory utilisation

Enhancing the Computational Efficiency of GPU Codes

Language specific optimisation techniques:

- In baseline Fortran, Python, and Julia codes, thread index is used to access the values of the variables stored in shared memory
- · This leads to shared memory bank conflicts

 In the optimised codes, both the thread index and block dimensions are used to access the shared memory

• In C code, implementation of shared memory deteriorated the performance

Optimised GPU codes: Performance metrics of the kernel - flux_residual

Code	Registers	Achieved	Global sectors per request	
	per thread	occupancy	Load	Store
Fortran - baseline	220	3.10	24.34	31.56
Fortran - optimised	156	17.84 - 18.10	17.86 - 18.25	7.11
C - baseline	184	12.03	10.63	8.75
C - optimised	154	17.81 - 18.10	10.19 - 10.31	8.75
Python - baseline	128	18.33	26.92	32.00
Python - optimised	122	17.87 - 18.16	26.30 - 26.51	32.00
Julia - baseline	152	16.76	6.29	4.37
Julia - optimised	128	23.69 - 24.02	6.26 - 6.31	4.42

Comparison of the metrics using baseline and optimised codes on the finest point distribution

- Tabulated metrics in the red color correspond to optimised GPU codes
- · Metrics in the black color are from the Baseline GPU codes

Optimised GPU codes: Performance metrics of the kernel - flux_residual

Points	Code	SM utilisation	Performance in TFLOPS	Arithmetic intensity
	Fortran - baseline	11.68	0.57	44.89
	Fortran - optimised	47.85 - 48.68	2.35 - 2.41	10.71 - 10.90
40M	C - baseline	43.58	2.167	32.00
	C - optimised	56.41 - 58.30	2.79 - 2.88	9.12 - 9.66
Fine	Python - baseline	30.31	1.3491	66.84
	Python - optimised	54.29 - 55.36	2.58 - 2.64	18.20 - 18.30
	Julia - baseline	27.10	1.3443	17.25
	Julia - optimised	34.19 - 34.42	1.69 - 1.70	4.93 - 7.93

SM utilisation, performance, and arithmetic intensity of the baseline and optimised GPU codes

- · Tabulated metrics in the red color correspond to optimised GPU codes
- Metrics in the black color are from the Baseline GPU codes

GPU Accelerated Meshfree Solver

Numerical Results

Conclusions & Future Work

Performance of the optimised GPU codes

• Speedup of the GPU codes = (RDP of the optimised serial C code) / (RDP of the GPU codes)

Preliminary Investigations on A100 GPU Card

Number of points	Code	RDP on V100	RDP on A100	Speedup factor
	Fortran	4.3365×10^{-8}	3.0838×10^{-8}	1.41
40M	C	3.4100×10^{-8}	1.7582×10^{-8}	1.94
Fine	Python	5.1540×10^{-8}	2.6415×10^{-8}	1.95
	Julia	4.6825×10^{-8}	2.9000×10^{-8}	1.61

Run-time comparisons of optimised GPU codes on V100 and A100 cards

• Speedup factor of the GPU codes = RDP value on V100 / RDP value on A100

Conclusions & Future Work

Conclusions:

- Presented a performance analysis of baseline and optimised GPU meshfree solvers
- · Highlighted the underlying software stack differences
- CUDA C exhibited superior performance, followed by Fortran
- With the advent of NVIDIA's CUDA Python and rapid developments in Julia's CUDA library, the performance gap of these languages with C/Fortran can be narrowed

Future Work:

- · Comparing the performance of these GPU codes with Regent code
- · Extending the meshfree solvers to three dimensional flows and multi GPUs
- · GPU accelerated discrete adjoint meshfree solvers for aerodynamic optimisation

Conclusions & Future Work

Conclusions:

- Presented a performance analysis of baseline and optimised GPU meshfree solvers
- · Highlighted the underlying software stack differences
- CUDA C exhibited superior performance, followed by Fortran
- With the advent of NVIDIA's CUDA Python and rapid developments in Julia's CUDA library, the performance gap of these languages with C/Fortran can be narrowed

Future Work:

- · Comparing the performance of these GPU codes with Regent code
- · Extending the meshfree solvers to three dimensional flows and multi GPUs
- · GPU accelerated discrete adjoint meshfree solvers for aerodynamic optimisation

Thank you very much