
Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Performance Analysis of GPU Accelerated Meshfree Solvers in

Fortran, C, Python, and Julia

Nischay Ram Mamidi1, Dhruv Saxena1, Kumar Prasun2, Anil Nemili1

Bharatkumar Sharma3, SM Deshpande4

1Birla Institute of Technology and Science - Pilani, Hyderabad Campus, India

2Courant Institute of Mathematical Sciences, New York, 10012, USA

3NVIDIA

4524, Tata Nagar, Bengaluru, India (Formerly at JNCASR, Bengaluru)

NVAITC Presentation Global 2022

March 31, 2022

1 / 30



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Outline

Introduction

GPU Accelerated Meshfree Solver

Numerical Results

Conclusions & Future Work

2 / 30



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Introduction

• Numerical simulation of fluid flow problems involving multi body configurations is

computationally expensive

• Such simulations require solving the Euler/Naiver-Stokes equations on grids

ranging from a few million to several billion grid points

• To perform these calculations, the CFD parallel codes use CPUs or CPU-GPUs

• GPUs: Alternative to CPUs in performance, cost, and energy

• GPUs consistently outperform CPUs in SIMD calculations

• Several CFD groups have developed GPU codes using Fortran/C/C++
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Introduction

Modern languages such as Python, Julia, Regent, and Chapel have steadily risen

in scientific computing

Advantages:

• Architecture Independent

• Easy to maintain, high code readability, few lines of code

• New developers can quickly join and work on the code

Implicit parallelism:

• Regent and Chapel support implicit parallelism

• Task division and data synchronisation are performed automatically

Examples of Petascale parallel codes:

• PyFR - A compressible Navier-Stokes solver for unstructured grids

(Witherden-2014)

• Celeste - An astronomical image analysis tool (Regier-2018)
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Objective of this research

• A rigorous investigation and comparison of the GPU codes in traditional and

modern languages has not yet been pursued

• In this research we present an analysis of GPU codes for 2D Euler equations

• The CFD solver is based on the meshfree q-LSKUM (Ghosh-1995, Deshpande-2002)

• Traditional languages: Fortran and C

• Modern languages: Python and Julia

• The programming model CUDA is used to construct the GPU solvers

• To investigate how the ecosystem of these languages has evolved
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Objective of this research

• Acceleration of CFD codes starts with the implementation of the baseline code

• Baseline codes may not be computationally efficient

• Reasons: Poor memory access patterns, kernel launch configurations, size of the

kernels, and redundant floating-point operation sequences

• To optimise the codes, baseline codes are profiled

• Profilers provide a guided analysis to understand the utilisation of the hardware

• Profiled data can be used to analyse performance metrics and identify bottlenecks

• Resolving these issues can enhance the computational efficiency

• This research highlights the importance of profiling and the cycle of analysis and

optimisation
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Meshfree q-LSKUM Solver for 2D Euler Equations

Least Squares Kinetic Upwind Method (LSKUM):

• Euler equations: Govern the inviscid compressible fluid flows
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= 0

• Introduce upwinding using Kinetic Flux Vector Splitting (KFVS) (Mandal-1989)
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• Basic idea of LSKUM: Approximate the spatial derivatives using Least Squares (Ghosh-1995)

• Input: Set of points and their neighbours (known as connectivity)

• Operates on structured, unstructured, cartesian, chimera point distributions, etc.

• Spatial accuracy: Using defect correction method + inner iterations, along with q-variables

(q-LSKUM) (Deshpande-2002)

• Time accuracy: Strong Stability Preserving Runge-Kutta Schemes (SSP-RK3)
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Serial Pseudo Code

Algorithm 1: Serial meshfree solver based on q-LSKUM

subroutine q-LSKUM
call preprocessor()

for n← 1 to n ≤ N do
call timestep()

for rk ← 1 to 4 do
call q variables()

call q derivatives()

call flux residual()

call state update(rk)

end

call residue()
end

call postprocessor()
end subroutine
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GPU Accelerated Pseudo Code (Baseline)

Algorithm 2: GPU accelerated meshfree solver based on q-LSKUM

subroutine q LSKUM:

call preprocessor()

cudaHostToDevice(CPU data, GPU data)

for n← 1 to n ≤ N do

kernel ≪ grid, block ≫ timestep()

for rk ← 1 to 4 do

kernel ≪ grid, block ≫ q variables()

kernel ≪ grid, block ≫ q derivatives()

kernel ≪ grid, block ≫ flux residual()

kernel ≪ grid, block ≫ state update(rk)

end

reduction residue()

end

cudaDeviceToHost(GPU data, CPU data)

call postprocessor()

end subroutine
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Numerical Results

Test case details:

• Inviscid flow over a NACA 0012 airfoil

• M = 0.63 and AoA = 2o

• Seven levels of point distributions: 0.625M to 40M

Language versions and compiler specifications:

• Fortran 90, C - NVIDIA HPC SDK 21.2

• Python 3.9.1 - Numba 0.55.0 and CUDA Toolkit 11.2.2

• Julia 1.5.3 - CUDA.jl 2.4.1

Hardware configuration:

• Serial runs: AMD EPYCTM 7542 (2x32 cores) with 256 GB RAM

• GPU runs: NVIDIA Tesla V100 32GB (PCIe)
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Performance of the baseline GPU codes

Level No. of points Fortran C Python Julia

RDP × 10−8 (Lower is better)

1 0.625M 14.4090 5.1200 9.4183 7.3120

2 1.25M 12.8570 4.8800 8.9765 6.2160

3 2.5M 11.9100 4.6000 8.7008 5.4800

4 5M 11.5620 4.6673 8.6080 5.2800

5 10M 11.3640 4.5800 8.6409 5.0600

6 20M 11.3130 4.4096 7.9278 4.9650

7 40M 12.2720 4.2573 7.8805 4.9350

Comparison of the RDP values based on baseline GPU codes

• RDP = Total wall clock time in seconds/No. of iterations/No. of points

• Number of iterations = 1000

• For Fortran, Python, and Julia lowest RDP is achieved with 64 threads per block. For C this value is 128

11 / 30



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Performance of the baseline GPU codes

Speedup of the GPU codes Relative Speedup of the GPU codes
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• Speedup of the GPU codes = (RDP of the optimised serial C code) / (RDP of the GPU codes)

• Relative speedup = (RDP of the Fortran GPU code) / (RDP of C/Python/Julia GPU codes)

12 / 30



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Baseline GPU codes: Relative run-time of the Kernels

No.of points Code q variables q derivatives flux residual state update

Fortran 0.50% 25.73% 72.67% 0.82%

0.625M C 0.77% 44.70% 50.51% 1.87%

Coarse Python 0.67% 37.48% 59.73% 1.47%

Julia 1.24% 24.52% 71.71% 1.89%

Fortran 0.42% 25.60% 72.95% 0.74%

5M C 0.80% 47.34% 47.68% 1.84%

Medium Python 0.60% 38.43% 59.10% 1.38%

Julia 1.37% 24.40% 71.77% 1.85%

Fortran 0.41% 25.38% 73.21% 0.74%

40M C 0.81% 42.27% 52.94% 1.85%

Fine Python 0.58% 38.19% 59.40% 1.35%

Julia 1.32% 24.12% 72.11% 1.85%

Run-time analysis of the kernels

• Relative run-time of a kernel = (Kernel execution time) / (Overall time taken)
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Baseline GPU codes: Performance metrics of the kernel - flux residual

Points Code SM Memory Achieved Registers

utilisation utilisation occupancy per thread

shown in percentage

Fortran 11.56 21.27 3.08 220

0.625M C 43.16 10.41 11.76 184

Coarse Python 29.55 25.95 18.03 128

Julia 26.23 18.28 16.54 152

Fortran 11.68 21.49 3.10 220

40M C 43.58 9.15 12.03 184

Fine Python 30.31 26.58 18.33 128

Julia 27.10 18.24 16.76 152

• SM utilisation: Total utilisation of compute sub-systems (memory load/store operations,

arithmetic and logic operations)

• Achieved occupancy: Total number of running warps / The theoretical maximum warps
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Baseline GPU codes: Roofline Analysis

Roofline Model

• Shows a kernel’s arithmetic intensity

with its achievable performance

• Arithmetic intensity is defined as the

number of FLOPs per byte of data

movement

• Achieved performance is measured in

TFLOPs

• A code with performance closer to the

peak boundary uses the GPU resources

optimally
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Roofline analysis of the flux residual kernel

To investigate the difference in arithmetic intensity of Python and Julia codes we analyse the

scheduler and warp state statistics
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Baseline GPU codes: Scheduler State Statistics

• A warp is a collection of 32 threads executed simultaneously by an SM

• These warps are executed on the SM via a scheduler

• Scheduler states: GPU maximum warps, active, eligible, and issued warps

• GPU maximum warps: Maximum warps that can be issued per scheduler (For V100 it is 16)

• Active warps: Warps for which resources are allocated (Ex: registers, shared memory)

• Eligible warps: Subset of active warps that are not stalled

• Issued warps: Subset of eligible warps for which instructions are executed

• Note: Active warps = Eligible warps + Stalled warps
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Baseline GPU codes: Scheduler State Statistics

Points Code Active Eligible Issued Eligible warps

warps per scheduler in percentage

40M C 1.93 0.24 0.21 12.43%

Fine Python 2.93 0.37 0.30 12.62%

Julia 2.69 0.24 0.20 8.92%

A comparison of scheduler statistics on the finest level of point distribution

To understand the low number of eligible warps we investigate the warp state statistics
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Baseline GPU codes: Warp State Statistics

• There are several states for which warp stalls can occur

• In the present work, warp stalls due to no instruction, wait, and long scoreboards are

dominant

• No instruction: Occurs when a warp is waiting to get selected to execute the next instruction

• It can also happen due to instruction cache miss

• Wait: Warp stalls if it is waiting for a fixed latency execution dependencies (Ex: FMA, ALU)

• Long scoreboard: Occurs when a warp waits for the data from L1TEX (Ex: local / global

memory units)
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Baseline GPU codes: Warp State Statistics

Points Code Stall in warp execution (in cycles) due to

no instruction wait long scoreboard

40M C 2.96 3.12 0.87

Fine Python 4.94 2.14 0.66

Julia 5.4 2.6 3.10

A comparison of warp state statistics on the finest level of point distribution

• These metrics did not reveal any conclusive evidence regarding the poor performance of

Python over Julia

• To further analyse, we investigate the memory access patterns and pipe utilisation
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Baseline GPU codes: Global Memory Access Patterns

Code Global Load Global Store

Sectors Sectors per Sectors Sectors per

request request

C 3, 789, 109, 860 10.63 43, 749, 721 8.75

Python 14, 637, 012, 265 26.92 159, 999, 732 32.00

Julia 7, 884, 258, 310 7.41 40, 000, 000 8.00

A comparison of global load and store metrics on the finest level of point distribution

• Global load: Operations which retrieve data from the global memory

• Global store: Operations which store data in the global memory

• Sector: An aligned 32 byte-chunk of global memory

• Sectors per request: The average ratio of sectors to the number of load / store operations
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Baseline GPU codes: Shared Memory Access Patterns

Points Code Shared memory bank conflicts due to

load operations store operations

40M Python 3, 824, 672 107, 628, 065

Julia 4, 413, 868 0

A comparison of shared memory bank conflicts due to load and store operations

• Bank conflict occurs when multiple threads in a warp access the same memory bank
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Baseline GPU codes: Pipeline Utilisation

Points Code FP64 FMA ALU LSU

C 43.63 6.58 5.87 1.78

40M Python 28.67 14.28 21.24 8.05

Julia 27.09 9.41 9.43 7.97

A comparison of pipe utilisation of the streaming multiprocessor (SM)

Points Code DFMA IMAD DMUL IADD3 DADD

Instructions presented in Billions

C 6.1262 2.7451 2.0509 0.9514 1.4174

40M Python 8.2769 14.1171 2.3879 4.1338 3.1966

Julia 6.3009 6.8711 2.2617 2.6878 1.4201

A comparison of various instructions executed by an SM
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Baseline GPU codes: Summary

Summary on the performance of baseline GPU codes:

• The C code with better utilisation of SM has the lowest RDP

• Fortran code with very low occupancy has the highest RDP

• Python code has better SM utilisation and achieved occupancy

• However, it suffers from global memory coalescing, shared memory bank conflicts, excessive

utilisation of FMA and ALU pipelines

• Due to this the RDP of Python is significantly higher than Julia
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Enhancing the Computational Efficiency of GPU Codes

Optimisation techniques employed:

• For baseline codes the register usage of the kernel flux residual is very high

• This indicates that the size of the kernel is too large

• This kernel is split into smaller kernels that compute the spatial derivatives of Gx±, Gy±

• This resulted in reduced register pressure and thus increased occupancy

• Kernel splitting also reduced the warp stalls and increased the overall memory utilisation
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Enhancing the Computational Efficiency of GPU Codes

Language specific optimisation techniques:

• In baseline Fortran, Python, and Julia codes, thread index is used to access the values of the

variables stored in shared memory

• This leads to shared memory bank conflicts

Thread 1

Bank 1 Bank 2 Bank 1 Bank 1Bank 4Bank 3 Bank 5 Bank 6 Bank 8Bank 7 Bank 29 Bank 30 Bank 32Bank 31

Thread 9 Thread 17 Thread 25 Thread 2 Thread 10 Thread 18 Thread 26 Thread 8 Thread 16 Thread 24 Thread 32

• In the optimised codes, both the thread index and block dimensions are used to access the

shared memory

Thread 2

Bank 2

Thread 3

Bank 3

Thread 4

Bank 4

Thread 5

Bank 5

Thread 6

Bank 6

Thread 31

Bank 31

Thread 32

Bank 32

Thread 1

Bank 1

• In C code, implementation of shared memory deteriorated the performance
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Optimised GPU codes: Performance metrics of the kernel - flux residual

Code Registers Achieved Global sectors per request

per thread occupancy Load Store

Fortran - baseline 220 3.10 24.34 31.56

Fortran - optimised 156 17.84− 18.10 17.86− 18.25 7.11

C - baseline 184 12.03 10.63 8.75

C - optimised 154 17.81− 18.10 10.19− 10.31 8.75

Python - baseline 128 18.33 26.92 32.00

Python - optimised 122 17.87− 18.16 26.30− 26.51 32.00

Julia - baseline 152 16.76 6.29 4.37

Julia - optimised 128 23.69− 24.02 6.26− 6.31 4.42

Comparison of the metrics using baseline and optimised codes on the finest point distribution

• Tabulated metrics in the red color correspond to optimised GPU codes

• Metrics in the black color are from the Baseline GPU codes
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Optimised GPU codes: Performance metrics of the kernel - flux residual

Points Code SM Performance Arithmetic

utilisation in TFLOPS intensity

Fortran - baseline 11.68 0.57 44.89

Fortran - optimised 47.85− 48.68 2.35− 2.41 10.71− 10.90

C - baseline 43.58 2.167 32.00

40M C - optimised 56.41− 58.30 2.79− 2.88 9.12− 9.66

Fine Python - baseline 30.31 1.3491 66.84

Python - optimised 54.29− 55.36 2.58− 2.64 18.20− 18.30

Julia - baseline 27.10 1.3443 17.25

Julia - optimised 34.19− 34.42 1.69− 1.70 4.93− 7.93

SM utilisation, performance, and arithmetic intensity of the baseline and optimised GPU codes

• Tabulated metrics in the red color correspond to optimised GPU codes

• Metrics in the black color are from the Baseline GPU codes
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Performance of the optimised GPU codes

Speedup of the baseline GPU codes Speedup of the optimised GPU codes

1 2 3 4 5 6 7

Point distribution level

50

100

150

200

250

300

350

400

S
p

e
e

d
u

p

Fortran

C

Python

Julia

1 2 3 4 5 6 7

Point distribution level

100

150

200

250

300

350

400

S
p

e
e

d
u

p

C

Fortran

Python

Julia

• Speedup of the GPU codes = (RDP of the optimised serial C code) / (RDP of the GPU codes)
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Preliminary Investigations on A100 GPU Card

Number Code RDP RDP Speedup

of points on V100 on A100 factor

Fortran 4.3365× 10−8 3.0838× 10−8 1.41

40M C 3.4100× 10−8 1.7582× 10−8 1.94

Fine Python 5.1540× 10−8 2.6415× 10−8 1.95

Julia 4.6825× 10−8 2.9000× 10−8 1.61

Run-time comparisons of optimised GPU codes on V100 and A100 cards

• Speedup factor of the GPU codes = RDP value on V100 / RDP value on A100
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Conclusions & Future Work

Conclusions:

• Presented a performance analysis of baseline and optimised GPU meshfree solvers

• Highlighted the underlying software stack differences

• CUDA C exhibited superior performance, followed by Fortran

• With the advent of NVIDIA’s CUDA Python and rapid developments in Julia’s CUDA library,

the performance gap of these languages with C/Fortran can be narrowed

Future Work:

• Comparing the performance of these GPU codes with Regent code

• Extending the meshfree solvers to three dimensional flows and multi GPUs

• GPU accelerated discrete adjoint meshfree solvers for aerodynamic optimisation

Thank you very much
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