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Abstract—This paper presents a comprehensive analysis of
the performance of Fortran, C, Python, and Julia based
GPU accelerated meshfree solvers for compressible flows. The
programming model CUDA is used to develop the GPU codes.
The meshfree solver is based on the least squares kinetic upwind
method with entropy variables (q-LSKUM). To measure the
performance of baseline codes, benchmark calculations are per-
formed. The codes are then profiled to investigate the differences
in their performance. Analysing various performance metrics for
the computationally expensive flux residual kernel helped identify
various bottlenecks in the codes. To resolve the bottlenecks,
several optimisation techniques are employed. Post optimisation,
the performance metrics have improved significantly, with the C
GPU code exhibiting the best performance.

Index Terms—Fortran, C, Python, Julia, GPUs, CUDA, Mesh-
free methods, LSKUM, Performance analysis, Code optimisation.

I. INTRODUCTION

High performance computing (HPC) plays a critical
part in the numerical simulation of complex aerodynamic
configurations. Typically, such simulations require solving
the governing Euler or Navier-Stokes equations on fine grids
ranging from a few million to several billion grid points.
To perform such computationally intensive calculations, the
computational fluid dynamics (CFD) codes use either only
CPUs or CPU-GPUs. However, for computations on multiple
GPUs, CPUs tackle control instructions and file input-output
operations, while GPUs perform the compute intensive
floating point arithmetic. Over the years, GPUs have evolved
as a competitive alternative to CPUs in better performance,
cost, and energy efficiency. Furthermore, they consistently
outperform CPUs in single instruction multiple data (SIMD)
scenarios. Many research groups have developed GPU
codes for CFD applications using traditional programming
languages such as Fortran or C [1]–[4].

In recent years, modern languages such as Python [5],

Julia [6], Regent [7], and Chapel [8] have steadily risen
in the domain of scientific computing. Unlike Fortran and
C, these languages are architecture independent with the added
advantage of easy code maintenance and readability. Here,
Regent and Chapel provide an implicitly parallel model,
where task division and data synchronisation are performed
automatically. On the other hand, Python and Julia adopt
an explicit approach to parallelism similar to Fortran and C.

The journey of accelerating CFD codes starts with
implementing baseline code, which largely represents
the same structure of the sequential code. However, such
baseline GPU codes may not be computationally efficient.
This could be due to poor memory access patterns, kernel
launch configurations, size of the kernels, and redundant
floating-point operation sequences. The next step is the cycle
of code optimisation, where baseline codes are profiled to get
valuable insights related to performance. The profiled data
can be used to analyse the bottlenecks in performance critical
codes. Resolving these issues can significantly enhance the
computational efficiency of the GPU codes. The profilers
help the domain scientists understand the utilisation of
the GPU hardware. Furthermore, they provide a guided
analysis, which a specialist could have otherwise done in
parallel programming. This paper highlights the importance
of profiling and the cycle of analysis and optimisation by
highlighting metrics important to our code.
To the best of our knowledge, a rigorous investigation and
comparison of the performance of GPU codes for CFD
written in both traditional and modern languages are not yet
pursued. Towards this objective, in this paper, an attempt
has been made to present a comprehensive analysis of the
performance of GPU solvers for two-dimensional Euler
equations. For the CFD solver, the meshfree Least Squares
Kinetic Upwind Method with entropy variables (q-LSKUM)
[9] is used. The LSKUM based CFD codes are being used



in the National Aerospace Laboratories and the Defence
Research and Development Laboratory, India, to compute
flows around aircraft and flight vehicles [10]–[14]. The
programming model CUDA [15] is used to construct the
GPU solvers. Here, Fortran and C represent the traditional
languages. Python and Julia are selected for modern
languages as they are increasingly being used in CFD [16]
and other domains of scientific computing such as machine
learning [17], astrophysics [18], bioinformatics [19] and drug
discovery [20]. Although the compilers of the four languages
are different, they target a common interface called CUDA
API. By analysing the performance of the baseline and the
optimised GPU meshfree solvers, we want to investigate how
the ecosystem of these four languages has evolved.
This paper is organised as follows. Section II describes the
basic theory of the meshfree scheme based on q-LSKUM.
Section III presents the pseudo-code of the serial and GPU
accelerated meshfree solvers. In Section IV, we first present
benchmarks comparing the runtime performance of the
baseline GPU codes. To investigate the difference in their
runtimes, the codes are profiled. A methodology to identify
the bottlenecks that hamper the performance is presented
by analysing relevant metrics. Section V presents various
optimisation strategies to enhance computational efficiency.
Furthermore, numerical results are presented to compare the
performance of optimised GPU codes with the baseline codes.
Finally, Section VI presents the conclusions and a plan for
future work.

II. MESHFREE q-LSKUM SOLVER

The Least Squares Kinetic Upwind Method (LSKUM) [21]
is a meshfree scheme for the numerical solution of conser-
vation laws that govern compressible fluid flows. The basic
idea of LSKUM is to first approximate the spatial derivatives
in the upwind Boltzmann equation using the least squares
principle. After taking suitable moments [22], [23], we obtain
the meshfree numerical scheme for the Euler or Navier-
Stokes equations. To approximate the spatial derivatives in
the governing partial differential equations, LSKUM requires
a distribution of points, known as a point cloud. The cloud
of points can be obtained from various point generation
algorithms [24]. This section illustrates the theory of LSKUM
for the numerical solution of Euler equations.
In two-dimensions (2D), the Euler equations are given by

∂U

∂t
+

∂Gx

∂x
+

∂Gy

∂y
= 0 (1)

Here, U is the conserved vector, Gx and Gy are the flux
vectors along the coordinates x and y, respectively. In order to
construct an upwind scheme for the Euler equations, consider
the Courant-Issacson-Rees (CIR) split [25] 2D Boltzmann
equation,
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where v±i = (vi ± |vi|) /2. Here F is the Maxwellian velocity
distribution function, and v1 and v2 are the molecular veloci-

ties along the coordinates x and y, respectively. Second-order
approximations to the spatial derivatives Fx and Fy can be
obtained using the defect correction procedure [26], [27]. To
derive the desired formulae for the unknowns at a point P0,
consider the Taylor series expansion of F up to quadratic terms
at a point Pi ∈ N (P0),

∆Fi =∆xiFx0
+∆yiFy0

+
∆xi

2
(∆xiFxx0

+∆yiFxy0
)

+
∆yi
2

(∆xiFxy0 +∆yiFyy0) +O (∆xi,∆yi)
3
, i = 1, . . . , n

(3)

where ∆xi = xi − x0, ∆yi = yi − y0, ∆Fi = Fi − F0. Here,
n denotes the number of neighbours of the point P0. N (P0)
is the set of neighbours or the stencil of P0. To cancel the
second-order derivative terms in the above equation, consider
the Taylor series expansions of Fx and Fy to linear terms
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Substituting the above expressions in eq. (3), we obtain

∆Fi = ∆xiFx0 +∆yiFy0 +
1

2
{∆xi∆Fxi +∆yi∆Fyi} (5)

Define a modified perturbation in Maxwellians, ∆F̃i = F̃i −
F̃0 so that the leading terms in the truncation errors of the
formulae for Fx and Fy are of the order of (∆xi,∆yi)

2,

∆F̃i = ∆Fi −
1

2
(∆xi∆Fxi

+∆yi∆Fyi
) (6)

Using ∆F̃i, eq. (5) reduces to

∆F̃i = ∆xiFx0
+∆yiFy0

+O (∆xi,∆yi)
3
, i = 1, . . . , n (7)

For n ≥ 3, we get an over-determined linear system of
equations. Using the least squares principle, we can obtain
the discrete approximations to Fx and Fy at the point P0 [27].
Taking Ψ - moments of eq. (2) along with the least squares for-
mulae, we get the semi-discrete second-order upwind scheme
for Euler equations based on LSKUM,
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Here, Gx± and Gy± are the kinetic split fluxes [26] along
the x and y directions, respectively. Note that the spatial
derivatives of Gx± and Gy± are approximated using the
stencils N±

x (P0) and N±
y (P0), respectively. These split sten-

cils are defined by N±
x (P0) = {Pi ∈ N (P0) | ∆xi ≶ 0} and

N±
y (P0) = {Pi ∈ N (P0) | ∆yi ≶ 0}. For example, the expres-

sions for the spatial derivatives of Gx± are given by
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The perturbations ∆G̃x
±
i are defined by
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A disadvantage of this approach is that it may not yield
second-order accuracy near the boundary points as the split



stencils to compute the partial derivatives of ∆Gx± may
not have enough neighbours. Another drawback is that the
numerical solution may not be positive as the distributions F̃i

and F̃0 need not be Maxwellians [9].
To preserve the positivity of the solution, q-variables [9], [22]
can be employed in the defect correction procedure instead of
Maxwellians. An advantage of this approach is that second-
order spatial accuracy can be obtained even at the boundary
points [10], [23]. Furthermore, q-variables can represent the
fluid flow at the macroscopic level as the transformations
U ←→ q and F ←→ q are unique. The q-variables in 2D
are defined by

q =
[
ln ρ+ ln β

γ−1 − β
(
u2
1 + u2

2

)
, 2βu1, 2βu2, −2β

]
(11)

Using q-variables, a second-order accurate upwind method
can be obtained by replacing ∆G̃x

±
i in eq. (10) with

∆Gx±
i (q̃) = Gx± (q̃i) − Gx± (q̃0). Here, q̃i and q̃0 are

the modified q-variables, defined by
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2
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Here qx and qy are evaluated to second-order using the least
squares as[
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The above formulae are implicit and need to be solved
iteratively using full stencil. These iterations are referred to as
inner iterations. The present work constructs the state-update
formula for eq. (8) using a four stage third-order Runge-Kutta
time marching algorithm [28] with local time stepping.

III. GPU ACCELERATED q-LSKUM SOLVER

This section presents the development of a GPU accelerated
meshfree solver based on q-LSKUM. We begin with a brief

Algorithm 1: Serial meshfree solver based on q-
LSKUM

subroutine q_LSKUM
call preprocessor()

for n← 1 to n ≤ N do
call timestep()

for rk ← 1 to 4 do
call q_variables()
call q_derivatives()
call flux_residual()
call state_update(rk)

end
call residue()

end
call postprocessor()

end subroutine

Algorithm 2: GPU accelerated meshfree solver based
on q-LSKUM

subroutine q_LSKUM:
call preprocessor()

cudaHostToDevice(CPU data, GPU data)
for n← 1 to n ≤ N do

kernel ≪ grid, block ≫ timestep()

for rk ← 1 to 4 do
kernel ≪ grid, block ≫
q_variables()

kernel ≪ grid, block ≫
q_derivatives()

kernel ≪ grid, block ≫
flux_residual()

kernel ≪ grid, block ≫
state_update(rk)

end
reduction residue()

end
cudaDeviceToHost(GPU data, CPU data)
call postprocessor()

end subroutine

description of the steps required to compute the flow solution
using a serial code.
Algorithm 1 presents a general structure of the serial mesh-
free q-LSKUM solver for steady-state flows [27]. The solver
consists of a fixed point iterative scheme, where each it-
eration evaluates the local time step, four stages of the
Runge-Kutta scheme, and the L2 norm of the residue. The
subroutine q_variables() evaluates the q-variables de-
fined in eq. (11) while q_derivatives() computes the
second-order accurate approximations of qx and qy using the
formulae in eq. (13). The most time consuming routine is
the flux_residual(), which performs the least squares
approximation of the kinetic split flux derivatives in eq.
(8). state_update(rk) updates the flow solution at each
Runge-Kutta step. All the input and output operations are per-
formed in preprocessor() and postprocessor(), re-
spectively. The parameter N represents the number of pseudo-
time iterations required to achieve a desired convergence in the
flow solution.
Algorithm 2 presents the structure of a GPU accelerated
q-LSKUM solver written in CUDA. The GPU solver mainly
consists of the following sequence of operations: transfer
the input data structure from host to device, performing
fixed-point iterations on the device, and finally transfer the
converged flow solution from device to host. In the baseline
implementation, for each serial function in Algorithm 1,
equivalent CUDA kernels [15] are constructed in the GPU
code. Some of these kernels in-turn call other kernels. For
example, the q_derivatives() kernel initially calls the



kernel that computes the first-order accurate q derivatives.
This is followed by another kernel to perform inner iterations
to obtain the second-order accurate q derivatives. Similarly,
the flux_residual() kernel calls the kernels to compute
the split flux derivatives ∂Gx±

∂x , and ∂Gy±

∂y . The evaluation
of residue is a reduction operation, performed on the GPU.
At each fixed point iteration, the value of the residue is
communicated back to the CPU. Note that this is the only
data that is communicated at each iteration.

IV. PERFORMANCE ANALYSIS OF BASELINE GPU SOLVERS

This section presents the numerical results to assess the
performance of baseline GPU solvers written in Fortran,
C, Python, and Julia. Note that, the implementation of
the meshfree q-LSKUM algorithm is the same for all the
languages. The test case under investigation is the inviscid
fluid flow simulation around the NACA 0012 airfoil at Mach
number, M = 0.63, and angle of attack, AoA = 2o . For the
benchmarks, numerical simulations are performed on seven
levels of point distributions. The coarsest distribution consists
of 625, 000 points, while the finest distribution consists of 40
million points. For second order spatial accuracy, three inner
iterations are performed to solve the implicit formulae for q-
derivatives in eq. (13).
Table I shows the hardware configuration, while Table II
shows the language specifications, compilers, and flags used to
execute serial and GPU computations. The Python GPU code
uses Numba 0.55.0 [29] and NumPy 1.20.1 [30], while Julia
GPU code uses CUDA.jl 2.4.1 library [6]. Although Python
provides PyCUDA, we want to test the performance of Numba,
as it allows the developers to implement CUDA GPU code
in native Python. All the computations are performed with
double precision and -O3 optimisation flags using CUDA
11.2.2.

CPU GPU

Model AMD EPYCTM 7542 Nvidia Tesla V 100 PCIe
Cores 64 (2× 32) 5120

Core Frequency 2.20 GHz 1.230 GHz
Global Memory 256 GiB 32 GiB
L2 Cache 16 MiB 6 MiB

TABLE I: Hardware configuration used to perform numerical
simulations.

A. RDP comparison of GPU Solvers

To measure the performance of the GPU codes, we adopt
a cost metric called the Rate of Data Processing (RDP). The
RDP of a meshfree code can be defined as the total wall clock
time in seconds per iteration per point. Note that lower the
value of RDP implies better the performance. Table III shows
a comparison of the RDP values for all the GPU codes. In the
present work, the RDP values are measured by specifying the
number of pseudo-time iterations in the GPU solvers to 1000.
Numerical simulations are performed with 32, 64, 128, and

Language Version Compiler Version

Fortran Fortran 90 nvfortran 21.2

C C 20 nvcc 21.2

Python Python 3.9.1 Numba 0.55.0

Julia Julia 1.5.3 CUDA.jl 2.4.1

TABLE II: List of language and compiler specifications used
to execute the codes.

Level Points Fortran C Python Julia

RDP × 10−8 (Lower is better)

1 0.625M 14.4090 5.1200 9.4183 7.3120

2 1.25M 12.8570 4.8800 8.9765 6.2160

3 2.5M 11.9100 4.6000 8.7008 5.4800

4 5M 11.5620 4.6673 8.6080 5.2800

5 10M 11.3640 4.5800 8.6409 5.0600

6 20M 11.3130 4.4096 7.9278 4.9650

7 40M 12.2720 4.2573 7.8805 4.9350

TABLE III: Comparison of the RDP values based on baseline
GPU codes.

256 threads per block. For Fortran, Python and Julia
GPU codes, the lowest RDP value on all levels of point
distribution is achieved with 64 threads per block. For C, the
lowest RDP is obtained with 128 threads per block.
The tabulated values clearly show that the GPU solver based
on C results in lowest RDP values on all levels of point
distribution and thus exhibits superior performance. On the
other hand, with the highest RDP values, the Fortran code
is computationally more expensive. As far as the Julia code
is concerned, its performance is better than Python and closer
to C.
To assess the overall performance of the GPU meshfree
solvers, we define another metric called speedup. The speedup
of a GPU code is defined as the ratio of the RDP of the
serial C code to the RDP of the GPU code. Figure 1 shows
the speedup achieved by the GPU codes. We observe that
the C code is around 2.5 times faster than Fortran, while
Julia and Python are respectively 2 and 1.5 times faster
than Fortran.

B. Run-time analysis of kernels

To analyse the performance of the GPU accelerated mesh-
free solvers, it is imperative to investigate the kernels em-
ployed in the solvers. Towards this objective, NVIDIA Nsight
Compute [31] is used to profile the GPU codes. Table IV
shows the relative run-time incurred by the kernels on coarse,
medium, and finest point distributions. Here, the relative run-
time of a kernel is defined as the ratio of the kernel execution
time to the overall time taken for the complete simulation.
This table shows that a very significant amount of run-
time is taken by the flux_residual kernel, fol-
lowed by q_derivatives. Note that the run-time of
q_derivatives kernel depends on the number of inner
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Fig. 1: Speedup achieved by the GPU codes.

Points Code q variables q derivatives flux residual state update

Fortran 0.50% 25.73% 72.67% 0.82%

0.625M C 0.77% 44.70% 50.51% 1.87%

Coarse Python 0.67% 37.48% 59.73% 1.47%

Julia 1.24% 24.52% 71.71% 1.89%

Fortran 0.42% 25.60% 72.95% 0.74%

5M C 0.80% 47.34% 47.68% 1.84%

Medium Python 0.60% 38.43% 59.10% 1.38%

Julia 1.37% 24.40% 71.77% 1.85%

Fortran 0.41% 25.38% 73.21% 0.74%

40M C 0.81% 42.27% 52.94% 1.85%

Fine Python 0.58% 38.19% 59.40% 1.35%

Julia 1.32% 24.12% 72.11% 1.85%

TABLE IV: Run-time analysis of the kernels on the finest
point distribution.

iterations. More the number of inner iterations, higher the time
spent in its execution. For the kernels q_variables and
state_update, the run-times are less than 2% of the total
execution time. For timestep, residue, and host ↔
device operations, the run-times are found to be negligible
and therefore not presented.

C. Performance metrics of the kernel flux residual

To understand the varied run-times of the GPU codes in ex-
ecuting the flux_residual kernel, we investigate the ker-
nel’s utilisation of streaming multiprocessor (SM) and memory
and achieved occupancy [31]. Table V shows a comparison of
these metrics on coarse, medium, and finest point distributions.
We can observe that the C code has the highest utilisation
of available SM resources, followed by Python and Julia
codes. On the other hand, the Fortran code has the poorest
utilisation. Higher SM utilisation indicates an efficient usage
of CUDA streaming multiprocessors, while lower values imply
that the GPU resources are underutilised. In the present work,
poor SM utilization limited the performance of the Fortran
code as more time is spent in executing the flux-residual
kernel. This resulted in higher RDP values for the Fortran
code.
Table V also presents the overall memory utilisation of the

Points Code SM Memory Achieved Registers
utilisation utilisation occupancy per thread

shown in percentage

Fortran 11.56 21.27 3.08 220

0.625M C 43.16 10.41 11.76 184

Coarse Python 29.55 25.95 18.03 128

Julia 26.23 18.28 16.54 152

Fortran 11.70 21.57 3.10 220

5M C 45.78 11.34 12.03 184

Medium Python 30.05 26.35 18.29 128

Julia 26.61 18.15 16.77 152

Fortran 11.68 21.49 3.10 220

40M C 43.58 9.15 12.03 184

Fine Python 30.31 26.58 18.33 128

Julia 27.10 18.24 16.76 152

TABLE V: A comparison of performance metrics on coarse,
medium and finest point distributions.

GPU codes. This metric shows the total usage of device
memory. Furthermore, it also indicates the memory throughput
currently being utilised by the kernel. Memory utilisation
can become a bottleneck on the performance of a kernel if
it reaches its theoretical limit [31]. However, low memory
utilisation does not imply that the kernel optimally utilises
it. The tabulated values show that the memory utilisation of
the GPU codes is well within the acceptable limits.
To understand the poor utilisation of SM resources, we investi-
gate the achieved occupancy of the flux_residual kernel.
The achieved occupancy is the ratio of the number of active
warps per SM to the maximum number of theoretical warps
per SM. A code with high occupancy allows the SM to execute
more active warps, thus increasing the overall SM utilisation.
Low occupancy limits the number of active warps eligible
for execution, leading to poor parallelism and latency. In the
present work, all the GPU codes exhibited low occupancy for
the flux_residual kernel. Table V also compares register
usage, one of the metrics that determine the number of active
warps. In general, the higher the register usage, the lower
the number of active warps. With the highest register usage,
the Fortran code has the lowest occupancy. The tabulated
values have shown that the utilisation of SM and memory, and
achieved occupancy of the Python code is higher than the
Julia code. However, the RDP values of Python are much
higher than Julia.
To investigate this unexpected behaviour of the Python code,
we present the roofline analysis [32] of the flux_residual
kernel. A roofline model is a logarithmic plot that shows
a kernel’s arithmetic intensity with its maximum achievable
performance. The arithmetic intensity is defined as the number
of floating-point operations per byte of data movement. Figure
2 shows the roofline analysis for all the GPU codes. Here,
achieved performance is measured in trillions of floating-
point operations per second. A code with performance closer
to the peak boundary uses the GPU resources optimally.
The C code, being closer to the roofline, yielded the best
performance, while Fortran is the farthest and resulted
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Fig. 2: Roofline analysis of the flux_residual kernel.

in poor performance. Although the achieved performance of
Python is the same as Julia’s, its arithmetic intensity is
much higher. Due to this, the RDP values of Python are
higher than Julia.
To investigate the difference in the utilisation of SM and

memory, and the arithmetic intensity of Python and Julia
codes, we analyse the scheduler and warp state statistics. For
comparison, we used C, as it exhibited superior performance.
Due to this we did not include Fortran in the discussion.
Typically scheduler statistics consist of the metrics - GPU
maximum warps, active, eligible, and issued warps. Here, GPU
maximum warps is the maximum number of warps that can
be issued per scheduler. For the NVIDIA V100 GPU card, the
maximum warps is 16. The warps for which resources such as
registers and shared memory are allocated are known as active
warps. Eligible warps are the subset of active warps that have
not been stalled and are ready to issue their next instruction.
From this set of eligible warps, the scheduler selects warps
for which one or more instructions are executed. These warps
are known as issued warps. Note that active warps is the sum
of eligible and stalled warps. As far as the warp state statistics
are concerned, it comprises several states for which warp stalls
can occur. In the present work, the warp stalls due to no
instruction, wait, and long scoreboards [31] are dominant.
No instruction warp stall occurs when a warp is waiting to
get selected to execute the next instruction. Furthermore, it
can also happen due to instruction cache miss. In general, a
cache miss occurs in kernels with many assembly instructions.
A warp stalls due to wait if it is waiting for fixed latency
execution dependencies such as fused multiply-add (FMA) or
arithmetic-logic units (ALU). A Long scoreboard stall occurs
when a warp waits for the requested data from L1TEX, such
as local or global memory units. If the memory access patterns
are not optimal, then the waiting time for retrieving the data
increases further.
Table VI shows the scheduler statistics on the finest point
distribution. From this table we can observe that the C code
has the lowest number of active warps. Although the number

Points Code Active Eligible Issued Eligible warps

warps per scheduler in percentage

40M C 1.93 0.24 0.21 12.43%

Fine Python 2.93 0.37 0.30 12.62%

Julia 2.69 0.24 0.20 8.92%

TABLE VI: A comparison of scheduler statistics on the finest
level of point distribution.

Points Code Stall in warp execution (in cycles) due to

no instruction wait long scoreboard

40M C 2.96 3.12 0.87

Fine Python 4.94 2.14 0.66

Julia 5.4 2.6 3.10

TABLE VII: A comparison of warp state statistics on the
finest level of point distribution.

of active warps is more in Python and Julia, they are still
much lesser than the GPU maximum warps. This is due to high
register usage per thread in the flux_residual kernel. The
tabulated values also show that the eligible warps are much
less than the active warps, as most active warps are stalled.

We investigate the warp state statistics to understand the
reason behind the low eligible warps in the flux_residual
kernel. Table VII shows a comparison of stall statistics mea-
sured in cycles. Note that the cycles spent by a warp in a stalled
state define the latency between two consecutive instructions.
These cycles also describe a warp’s readiness or inability to
issue the next instruction. The larger the cycles in the warp
stall states, the more warp parallelism is required to hide
latency. The tabulated values show that the overall stall in
warp execution is maximum for Julia. Due to this, Julia
has the lowest percentage of eligible warps.
The scheduler and warp state statistics analysis did not reveal

any conclusive evidence regarding the poor performance of
Python code over Julia. To further analyse, we shift our
focus towards the instructions executed inside the warps. In
this regard, we investigate the global and shared memory
access patterns of the warps and the pipe utilisation of the
SM.
Table VIII shows a comparison of metrics related to global
memory access. Here, global load corresponds to the load
operations to retrieve the data from the global memory. In
contrast, global store refers to the store operations to update
the data in the global memory. A sector is an aligned 32 byte-
chunk of global memory. The metric, sectors per request, is
the average ratio of sectors to the number of load or store
operations by the warp. Note that the higher the sectors per
request, the more cycles are spent processing the load or store
operations. We observe that the Python code has the highest
number of sectors per request while Julia has the lowest
values. With the highest number of sectors per request, the
Python code suffers from poor memory access patterns.



Code Global Load Global Store

Sectors Sectors per Sectors Sectors per
request request

C 3, 789, 109, 860 10.63 43, 749, 721 8.75

Python 14, 637, 012, 265 26.92 159, 999, 732 32.00

Julia 7, 884, 258, 310 7.41 40, 000, 000 8.00

TABLE VIII: A comparison of global load and store metrics
on the finest level of point distribution.

Points Code Shared memory bank conflicts due to

load operations store operations

C 0 0

40M Python 3, 824, 672 107, 628, 065

Julia 4, 413, 868 0

TABLE IX: A comparison of shared memory bank conflicts
due to load and store operations.

Table IX shows a comparison of shared memory bank
conflicts for C, Python, and Julia codes. A bank conflict
occurs when multiple threads in a warp access the same
memory bank. Due to this, the load or store operations are
performed serially. The C code does not have any bank con-
flicts, while Julia has bank conflicts due to load operations
only. The Python code has a significantly large number of
bank conflicts and thus resulted in the poor performance of
the flux_residual kernel.

Table X shows the utilisation of dominant pipelines such
as double-precision floating-point (FP64), Fused Multiply
Add (FMA), Arithmetic Logic Unit (ALU), and Load Store
Unit(LSU) for the flux_residual kernel. The FP64 unit
is responsible for executing instructions such as DADD, DMUL,
and DMAD. A code with a high FP64 unit indicates more
utilisation of 64-bit floating-point operations. The FMA unit
handles instructions such as FADD, FMUL, FMAD, etc. This
unit is also responsible for integer multiplication operations
such as IMUL, IMAD, and integer dot products. The ALU is
responsible for the execution of logic instructions. The LSU
pipeline issues load, store, atomic, and reduction instructions
for global, local, and shared memory. The tabulated values
show that Python and Julia codes have similar FP64 and
LSU utilisation. However, the Python code has excessive
utilisation of FMA and ALU. This is due to the Numba JIT
compiler, which is not generating optimal SASS code for the
flux_residual kernel.
To analyse the excessive utilisation of the FMA and ALU

pipelines in Python, Table XI compares the dominant in-
structions executed on the SM. We can observe that the
Python code has generated an excessive number of IMAD
and IADD3 operations that are not part of the meshfree
solver. The additional instructions are generated due to CUDA
thread indexing. This hampered the overall performance of the
Python code.

Points Code FP64 FMA ALU LSU

C 43.63 6.58 5.87 1.78

40M Python 28.67 14.28 21.24 8.05

Julia 27.09 9.41 9.43 7.97

TABLE X: A comparison of pipe utilisation of the streaming
multiprocessor (SM).

Points Code DFMA IMAD DMUL IADD3 DADD

Instructions presented in Billions

C 6.1262 2.7451 2.0509 0.9514 1.4174

40M Python 8.2769 14.1171 2.3879 4.1338 3.1966

Julia 6.3009 6.8711 2.2617 2.6878 1.4201

TABLE XI: A comparison of various instructions executed by
an SM.

In summary, the C code with better utilisation of SM yielded
the lowest RDP values. The Fortran code with very low
occupancy resulted in the highest RDP. The Python code has
better utilisation of SM and memory and achieved occupancy
compared to Julia. However, it suffers from global mem-
ory coalescing, shared memory bank conflicts, and excessive
utilisation of FMA and ALU pipelines. Due to this, the RDP
values of the Python code are significantly higher than the
Julia code.

V. PERFORMANCE ANALYSIS OF OPTIMISED GPU SOLVERS

The analysis of several performance metrics has shown that
there is scope for further improvement in the computational
efficiency of the flux_residual kernel. Towards this ob-
jective, various optimisation techniques have been employed.
The profiler metrics have shown that the register usage of the
flux_residual kernel is very high, which indicates that
the size of the kernel is too large. To circumvent this problem,
the flux_residual kernel is split into four smaller kernels
that compute the spatial derivatives of the split fluxes Gx+,
Gx−, Gy+ and Gy−, respectively. Note that these kernels are
of similar size. In general, a smaller kernel consumes fewer
registers compared to a larger kernel. Furthermore, kernels
that are limited by registers will have an improved occupancy.
Table XII shows a comparison of register usage per thread,
achieved occupancy, and global sectors per request for the
baseline and optimised GPU codes. We present a range for
metrics with both a lower and an upper bound for all the
split flux kernels of the optimised codes. For the optimised
codes, we present a range for metrics that has both a lower
and an upper bound for all the split flux kernels. The tabulated
values show a significant decrease in the register usage of the
Fortran code, followed by C and Julia. In the case of
Python, the reduction is observed to be marginal. We also
observe that the smaller kernels have more achieved occupancy
compared to the flux_residual kernel. However, in the
case of Python, the occupancy did not improve as it is limited
by the shared memory required per thread block.



Code Registers Achieved Global sectors per request

per thread occupancy Load Store

Fortran - baseline 220 3.10 24.34 31.56
Fortran - optimised 156 17.84− 18.10 17.86− 18.25 7.11

C - baseline 184 12.03 10.63 8.75
C - optimised 154 17.81− 18.10 10.19− 10.31 8.75

Python - baseline 128 18.33 26.92 32.00
Python - optimised 122 17.87− 18.16 26.30− 26.51 32.00

Julia - baseline 152 16.76 6.29 4.37
Julia - optimised 128 23.69− 24.02 6.26− 6.31 4.42

TABLE XII: A comparison of register usage, occupancy, and
global sectors per request of the baseline and optimised GPU
codes on the finest point distribution.

To further enhance the computational efficiency of the ker-
nels, the following language-specific optimisations are imple-
mented. For the Fortran code, instead of accessing and
updating the arrays in an iterative loop, array slices are used.
This improved the memory access patterns and global memory
coalescing. Table XII clearly shows a reduction in Fortran’s
load and store operations, which increases the SM utilisation.
However, this optimisation technique does not apply to the
C code, as arrays are used instead of vectors. It is also
not applicable for Julia code, where values are accessed
individually from a two-dimensional array. In the case of
Python, the current Numba compiler is unable to compile
kernels that use array slices.
In the baseline implementation of Fortran, Python, and
Julia codes only thread index is used to access the values
of the variables stored in shared memory. In the optimised
version both the thread index and block dimensions are used
to access the shared memory. This approach optimised the
array indexing and allowed the threads to access the memory
without any bank conflicts. Figures 3 and 4 show the shared
memory access patterns for the baseline and optimised GPU
codes in Fortran, Python, and Julia. Listing 1 presents
an example code in Python with 4-way shared memory
bank conflicts. Listing 2 presents a version of the code with
optimised indexing for shared memory arrays.

However, both in the baseline and optimised versions of
the GPU codes in C shared memory is not implemented as
it deteriorated the performance significantly. This is due to
the added latency in accessing shared memory compared to
registers. In the case of Fortran, Python, and Julia
codes without shared memory implementation led to high
register pressure and thread spilling. It is observed that the
latency costs due to thread spilling is much more than the
costs incurred by accessing shared memory. Therefore imple-
mentation of shared memory in these languages enhanced the
computational performance.
All the above optimisation techniques, except kernel split-

ting are implemented in other kernels wherever applica-
ble. Table IV shows that, after the flux_residual, the
q_derivatives is the most computationally intensive ker-
nel. Splitting of this kernel is not feasible as q-derivatives

in eq. (13) are evaluated implicitly. Note that these optimi-
sations may not yield a considerable reduction in the RDP
values of smaller point distributions. However, on finest point
distributions involving millions of points, these changes will
significantly reduce the RDP values.
Table XIII shows a comparison of SM utilisation, perfor-
mance in TFLOPS, and arithmetic intensity. Compared to the
flux_residual kernel, the split flux kernels have more SM
utilisation and thus resulted in more TFLOPS. For the split
kernels based on Fortran, C, and, Python the arithmetic
intensity is to the right of the ridgeline value of 7.05. This
implies that the kernels of these codes are compute bounded.
On the other hand, the Julia code is memory bounded as
the arithmetic intensity of its split kernels lies to the left of
the ridgeline.
Table XIV shows a comparison of RDP values based on
the optimised GPU codes. Note that for all the optimised
codes, the optimal number of threads per block is 128. We
can observe that the optimisation has significantly enhanced
the efficiency of the codes and thus resulted in smaller RDP
values. The C code has the lowest RDP values on all levels of
point distribution, followed by Fortran. Although optimisa-
tion techniques have reduced the RDP values of the Python
code, they are till higher than the Julia code. Figure 5
shows the speedup achieved by the optimised codes. From this
figure, on the finest point distribution, the C code is around
1.5 times faster than the Python code, while Fortran and
Julia codes are faster than Python by 1.2 and 1.1 times
respectively.

Points Code SM Performance Arithmetic
utilisation in TFLOPS intensity

Fortran - baseline 11.68 0.57 44.89
Fortran - optimised 47.85− 48.68 2.35− 2.41 10.71− 10.90

C - baseline 43.58 2.167 32.00
40M C - optimised 56.41− 58.30 2.79− 2.88 9.12− 9.66

Fine Python - baseline 30.31 1.3491 66.84
Python - optimised 54.29− 55.36 2.58− 2.64 18.20− 18.30

Julia - baseline 27.10 1.3443 17.25
Julia - optimised 34.19− 34.42 1.69− 1.70 4.93− 7.93

TABLE XIII: A comparison of SM utilisation, performance,
and arithmetic intensity of the naive and optimised GPU codes.

Points Version Fortran C Python Julia

RDP × 10−8 (Lower is better)

0.625M baseline 14.4090 5.1200 9.4183 7.3120

0.625M optimised 9.4446 4.0671 6.1372 7.5040

5M baseline 11.5620 4.6673 8.6080 5.2800

5M optimised 4.5856 3.4616 5.2355 4.6900

40M baseline 12.2720 4.2573 7.8805 4.9350

40M optimised 4.3365 3.4100 5.1540 4.6825

TABLE XIV: A comparison of the RDP values based on
baseline and optimised GPU codes.
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Fig. 3: 4-way bank conflicts in baseline Fortran, Python and Julia GPU codes.

Thread 2

Bank 2

Thread 3

Bank 3

Thread 4

Bank 4

Thread 5

Bank 5

Thread 6

Bank 6

Thread 31

Bank 31

Thread 32

Bank 32

Thread 1

Bank 1

Fig. 4: Shared memory access pattern in optimised Fortran, Python and Julia GPU codes.

@cuda.jit
def example_kernel(a):

thread_index_x = cuda.threadIdx.x
block_index_x = cuda.blockIdx.x
block_width_x = cuda.blockDim.x # 128 threads per block
temp = cuda.shared.array(shape = (128 * 4), dtype=numba.float64)
for i in range(4):

temp[thread_index_x * 4 + i] = a[i]

Listing 1: An example in Python with baseline version of indexing for shared memory arrays.

@cuda.jit
def example_kernel(a):

thread_index_x = cuda.threadIdx.x
block_index_x = cuda.blockIdx.x
block_width_x = cuda.blockDim.x # 128 threads per block
temp = cuda.shared.array(shape = (128 * 4), dtype=numba.float64)
for i in range(4):

temp[thread_index_x + block_width_x * i] = a[i]

Listing 2: An example in Python with optimised version of indexing for shared memory arrays.
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Fig. 5: Speedup achieved by the optimised GPU codes.

For C and Python, the RDP values decreased with point
refinement and saturated after the third level of point distribu-
tion. This is due to the SM utilisation stagnating as we move
towards finer point distributions. In the case of Fortran
we observed an increase in SM utilisation with successive
point refinement, resulting in a continuous reduction in RDP
values. Similar arguments can be drawn for Julia. The same
behaviour is exhibited in the speedup plot.

VI. CONCLUSIONS

In this paper, we have presented a performance analysis
of Fortran, C, Python, and Julia based baseline and
optimised GPU meshfree solvers. The meshfree solver chosen
for the analysis was based on the least squares kinetic upwind
method with entropy variables (q-LSKUM). Benchmark sim-
ulations were performed on seven levels of point distribution
ranging from 0.625 million to 40 million points. To measure
the performance of the GPU solvers, a metric called the rate
of data processing (RDP) was introduced. This metric was
defined as the total wall clock time in seconds per iteration
per point.
The latest NVIDIA profiling tools were used to investigate
the differences in the RDP values of the baseline GPU codes.
For the computationally expensive kernel flux_residual,
various performance metrics were captured. Analysing these
metrics helped identify bottlenecks such as low occupancy,
high warp stalls, uncoalesced global memory access patterns,
shared memory bank conflicts, excessive FMA and ALU
pipeline utilisation.
To resolve these bottlenecks, various optimisation strategies
were employed. These include kernel splitting, shared memory
indexing, and array splicing. The impact of these optimisation
techniques on Fortran code was significant, as the RDP



values decreased significantly. However, C code still exhibited
superior performance, followed by Fortran, Julia, and
Python.
The present work highlighted the underlying software stack
differences that resulted in varied metrics across prominent
programming languages used in CFD. CUDA C has been
supported by NVIDIA since its inception in 2007 and provides
more compiler-level optimisation strategies. This generated
an efficient GPU SASS code yielding the smallest RDP
values. Modern languages Python and Julia provide more
programming productivity and code maintainability at the
cost of some performance hit. However, with the advent
of NVIDIA’s CUDA Python and rapid developments in
Julia’s CUDA library, the performance gap of these lan-
guages with Fortran and C can certainly be narrowed.
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