On the Performance of GPU Accelerated Meshfree Solvers in

Fortran, C++, Python, and Julia

Nischay Ram Mamidi¹, Kumar Prasun¹, Dhruv Saxena¹, Anil Nemili¹ Bharatkumar Sharma², SM Deshpande³

 1 Birla Institute of Technology and Science - Pilani, Hyderabad Campus, India 2 NVIDIA

³524, Tata Nagar, Bengaluru, India (Formerly at JNCASR, Bengaluru)

NVIDIA GPU Technology Conference - 2021 April 12 - 16, 2021

GPU Accelerated Meshfree Solver	Numerical Results	Conclusions & Future Work

Outline

Introduction

GPU Accelerated Meshfree Solver

Numerical Results

Conclusions & Future Work

Introduction	GPU Accelerated Meshfree Solver	Numerical Results	Conclusions & Future Work
•0			

Introduction

- · Numerical simulations of fluid flow problems are computationally intensive
- For example, accurate capture of flow features around aircraft wings, flight vehicles, etc., do require simulations on fine grids with millions of grid points
- Existing parallel codes in CFD: CPU based (MPI) or GPU based (CUDA)
- Traditionally these codes are written in Fortran/C/C++

Introduction	GPU Accelerated Meshfree Solver	Numerical Results	Conclusions & Future Work
00			

Introduction

· Alternatively, we can employ modern languages like Python or Julia

Advantages:

- · Architecture Independent. Capable of running on any HPC platform
- · Easy to maintain, high code readability, few lines of code
- New developers can quickly join and work on the code

Examples of Petascale parallel codes based on Python and Julia:

- PyFR A compressible Navier-Stokes solver for unstructured grids (Python) (Witherden-2014)
- Celeste An astronomical image analysis tool (Julia) (Regier-2018)

Introduction	GPU Accelerated Meshfree Solver	Numerical Results	Conclusions & Future Work
00			

Introduction

· Alternatively, we can employ modern languages like Python or Julia

Advantages:

- · Architecture Independent. Capable of running on any HPC platform
- · Easy to maintain, high code readability, few lines of code
- New developers can quickly join and work on the code

Examples of Petascale parallel codes based on Python and Julia:

- PyFR A compressible Navier-Stokes solver for unstructured grids (Python) (Witherden-2014)
- Celeste An astronomical image analysis tool (Julia) (Regier-2018)

Objective of this research:

- · Develop GPU accelerated meshfree solvers for inviscid compressible flows
- Written in Fortran/C++/Python/Julia
- Assess their relative performance

00 •00 000000000 0		GPU Accelerated Meshfree Solver	Numerical Results	Conclusions & Future Work
	00	● 00	00000000000	0

Meshfree q-LSKUM Solver for 2D Euler Equations

Least Squares Kinetic Upwind Method (LSKUM):

· Euler equations: Govern the inviscid compressible fluid flows

$$\frac{\partial \boldsymbol{U}}{\partial t} + \frac{\partial \boldsymbol{G}}{\partial x} + \frac{\partial \boldsymbol{H}}{\partial y} = 0$$

• Introduce upwinding using Kinetic Flux Vector Splitting (KFVS) (Mandal-1989)

$$\frac{\partial U}{\partial t} + \frac{\partial G^+}{\partial x} + \frac{\partial G^-}{\partial x} + \frac{\partial H^+}{\partial y} + \frac{\partial H^-}{\partial y} = 0$$

- Basic idea of LSKUM: Approximate the spatial derivatives using Least Squares (Ghosh-1995)
- Input: Set of points and their neighbours (known as connectivity)
- Operates on structured, unstructured, cartesian, chimera point distributions, etc.
- Spatial accuracy: Using defect correction method + inner iterations, along with *q*-variables (q-LSKUM) (Deshpande-2002)
- Time accuracy: Strong Stability Preserving Runge-Kutta Schemes (SSP-RK3)

GPU Accelerated Meshfree Solver	Numerical Results	Conclusions & Future Work
000		

Serial Pseudo Code

Algorithm 1: Meshfree solver based on q-LSKUM

```
subroutine q-LSKUM
```

```
\begin{tabular}{|c|c|c|c|} \hline call & preprocessor() \\ \hline for $n \leftarrow 1$ to $n \le N$ do \\ call $timestep()$ \\ for $rk \leftarrow 1$ to 4$ do \\ call $q_variables()$ \\ call $q_variables()$ \\ call $q_variables()$ \\ call $q_variables()$ \\ call $flux_residual()$ \\ call $flux_residual()$ \\ call $residue(rk)$ \\ end \\ call $residue()$ \\ end \\ call $postprocessor()$ \\ end $subroutine$ \\ \hline end $subroutine$ \\
```

GPU Accelerated Meshfree Solver	Numerical Results	Conclusions & Future Work
000		

GPU Accelerated Pseudo Code

Algorithm 2: GPU Accelerated Meshfree solver based on q-LSKUM

```
subroutine q-LSKUM:
```

```
call preprocessor()
    cudaHostToDevice(CPU_data, GPU_data)
    for n \leftarrow 1 to n < N do
        Compute kernel « grid, block » timestep
        for rk \leftarrow 1 to 4 do
            Compute kernel « grid, block » q_variables
            Compute kernel « grid, block » q_derivatives
            Compute kernel ≪ grid, block ≫ flux_residual
            Compute kernel « grid, block » state_update(rk)
        end
    end
    cudaDeviceToHost(GPU_data, CPU_data)
    call postprocessor()
end subroutine
```

Numerical Results

Test Case Details:

- Inviscid flow over a NACA 0012 airfoil
- Ma = 0.63 and $AoA = 2^o$
- Seven levels of point distributions: $0.625 \mbox{M}$ to $40 \mbox{M}$

Language and Compiler Specifications

- Fortran 90 and C++ NVIDIA HPC SDK 21.2
- Python 3.8.6 Numba 0.53.0 and CUDA Toolkit 11.0.221
- Julia 1.5.3 CUDA.jl 2.4.1

Node Configuration

- Serial runs: AMD EPYCTM 7542 (2x32 cores) with 256 GB RAM
- GPU runs: NVIDIA Tesla V100 32GB (PCle)

Performance of the naive GPU codes

Level	No. of points	Fortran	C++	Python	Julia
	RDP :	$\times 10^{-8}$ (Lo	wer is bette	er)	
1	0.625M	14.4090	5.1200	9.4183	7.3120
2	1.25M	12.8570	4.8800	8.9765	6.2160
3	2.5M	11.9100	4.6000	8.7008	5.4800
4	5M	11.5620	4.6673	8.6080	5.2800
5	10M	11.3640	4.5800	8.6409	5.0600
6	20M	11.3130	4.4096	7.9278	4.9650
7	40M	12.2720	4.2573	7.8805	4.9350

Comparison of the RDP values based on naive GPU codes.

- RDP = Total wall clock time in seconds/No. of iterations/No. of points
- Number of iterations = 1000
- Optimal number of threads per block = 64

Performance of the naive GPU codes

- Speedup of the GPU codes = (RDP of the serial Fortran code) / (RDP of the GPU codes)
- Relative speedup = (RDP of the Fortran GPU code) /(RDP of C++/Python/Julia GPU codes)

Naive GPU codes: Relative run-time of the Kernels

No.of points	Code	q_variables	q_derivatives	flux_residual	state_update
	Fortran	0.50%	25.73%	72.67%	0.82%
0.625M	C++	0.77%	44.70%	50.51%	1.87%
Coarse	Python	0.67%	37.48%	59.73%	1.47%
	Julia	1.24%	24.52%	71.71%	1.89%
	Fortran	0.42%	25.60%	72.95%	0.74%
5M	C++	0.80%	47.34%	47.68%	1.84%
Medium	Python	0.60%	38.43%	59.10%	1.38%
	Julia	1.37%	24.40%	71.77%	1.85%
	Fortran	0.41%	25.38%	73.21%	0.74%
40M	C++	0.81%	42.27%	52.94%	1.85%
Fine	Python	0.58%	38.19%	59.40%	1.35%
	Julia	1.32%	24.12%	72.11%	1.85%

Run-time analysis of the kernels on the finest point distribution.

Naive GPU codes: Performance metrics of the kernel - flux_residual

No.of points	Code	SM utilisation	Memory utilisation	Achieved occupancy
	Fortran	11.56	21.27	3.08
0.625M	C++	43.16	10.41	11.76
Coarse	Python	29.55	25.95	18.03
	Julia	26.23	18.28	16.54
	Fortran	11.68	21.49	3.10
40M	C++	43.58	9.15	12.03
Fine	Python	30.31	26.58	18.33
	Julia	27.10	18.24	16.76

A comparison of various performance metrics on coarse and finest point distributions.

- SM utilisation: Total utilisation of compute sub-systems (memory load/store operations, arithmetic and logic operations)
- · Achieved occupancy: Total number of running warps / The theoretical maximum warps

Enhancing the Computational Efficiency of GPU Codes

Optimisation techniques employed:

- · The profile reports have shown that the kernel flux_residual was latency bounded
- The kernel was split into smaller kernels. This resulted in reduced register pressure and thus increased occupancy
- · Kernel splitting also reduced the warp stalls and increased the overall memory utilisation
- To further improve the memory utilisation, uncoalesced global memory access and shared memory bank conflicts were reduced
- · These changes significantly increased the overall SM utilisation and FLOPS

GPU Accelerated Meshfree Solver	Numerical Results	Conclusions & Future Wo
	00000000000	

Optimised GPU codes: Performance metrics of the kernel - flux_residual

Number of points	Code	SM utilisation	Memory utilisation	Achieved occupancy
	Fortran	11.68	21.49	3.10
	FULLIAN	47.85 - 48.08	41.60 - 45.49	17.84 - 18.10
	C++	43.58	9.15	12.03
40M	C++	56.41 - 58.30	33.25 - 34.70	17.81 - 18.10
Fine	Python	30.31	26.58	18.33
	Python	54.29 - 55.36	37.20 - 37.50	17.87 - 18.16
	Julia	27.10	18.24	16.76
	Julia	34.19 - 34.42	26.98 - 38.37	17.85 - 24.02

A comparison of various performance metrics on the finest point distribution.

- Tabulated metrics in the red color correspond to optimised GPU codes
- · Metrics in the black color are from the naive GPU codes

	GPU Accelerated Meshfree Solver	Numerical Results	Conclusions & Future Wor
00	000	00000000000	0

Optimised GPU codes: Relative run-time of the Kernels

No.of points	lo.of points Code		q_{-} derivatives	$flux_residual$	state_update
	Fortran	0.41%	25.38%	73.21%	0.74%
	Fortran	1.08%	50.89%	45.40%	1.95%
	C++	0.81%	42.27%	52.94%	1.85%
40M	C++	0.89%	49.28%	45.48%	2.02%
Fine	Python	0.58%	38.19%	59.40%	1.35%
	Python	0.93%	45.99%	50.17%	2.18%
	Julia	1.32%	24.12%	72.11%	1.85%
	Julia	1.54%	27.66%	67.94%	2.17%

Run-time analysis of the kernels on the finest point distribution.

- · Run-times in the red color correspond to optimised GPU codes
- Run-times in black color are for the naive GPU codes

Optimised GPU codes: Performance metrics of the kernel - *flux_residual*

Number of points	Code	TeraFLOPS (double precision)
	Fortran Fortran	0.5675 2.3547 - 2.4120
40M	C++ C++	2.1664 2.7947 - 2.8830
Fine	Python <mark>Python</mark>	1.3491 2.5794 - 2.6425
	Julia <mark>Julia</mark>	1.3443 1.6862 - 1.6990

Performance of GPU codes in terms of TFLOPS.

- · Metrics in the black color are from the naive GPU codes
- · Tabulated metrics in the red color correspond to optimised GPU codes

Performance of the optimised GPU codes

No. of points	Fortran	C++	Python	Julia
$RDP imes 10^{-8}$ (Lower is better)				
0.625M	14.4090	5.1200	9.4183	7.3120
0.625 M	9.4446	4.0671	6.1372	7.5040
5M	11.5620	4.6673	8.6080	5.2800
5M	4.5856	3.4616	5.2355	4.6900
40M	12.2720	4.2573	7.8805	4.9350
40M	4.3365	3.4100	5.1540	4.6825

- · Entries in the red color show the RDP values based on optimised GPU codes
- · Entries in the black color show the naive GPU codes RDP values
- Optimal number of threads per block: 64 (Naive codes), 128 (Optimised codes)

Performance of the optimised GPU codes

• Speedup of the GPU codes = (RDP of the serial Fortran code) / (RDP of the GPU codes)

Preliminary Investigations on A100 Card

Number of points	Code	RDP on V100	RDP on A100	Speedup on V100	Speedup on A100	Speedup factor
	Fortran	4.3365×10^{-8}	3.0838×10^{-8}	411.42	578.54	1.41
40M	C++	3.4100×10^{-8}	1.7582×10^{-8}	523.20	1014.74	1.94
Fine	Python	5.1540×10^{-8}	2.6415×10^{-8}	346.16	675.42	1.95
	Julia	4.6825×10^{-8}	2.9000×10^{-8}	381.02	615.21	1.61

Run-time comparisons of optimised GPU codes on V100 and A100 cards.

• Speedup factor of the GPU codes = RDP value on V100 / RDP value on A100

Conclusions & Future Work

Conclusions:

- Developed GPU accelerated meshfree compressible flow solvers in Fortran/C++/Python/Julia
- · Benchmarked and analysed the performance of kernels
- The RDP values have shown that the C++ GPU code has exhibited superior performance

Future Work:

- Optimise other computationally intensive kernels (eg: q_derivatives)
- Extension to multi GPUs and three dimensional flows
- GPU accelerated discrete adjoint meshfree solvers for aerodynamic optimisation

Conclusions & Future Work

Conclusions:

- Developed GPU accelerated meshfree compressible flow solvers in Fortran/C++/Python/Julia
- · Benchmarked and analysed the performance of kernels
- The RDP values have shown that the C++ GPU code has exhibited superior performance

Future Work:

- Optimise other computationally intensive kernels (eg: q_derivatives)
- Extension to multi GPUs and three dimensional flows
- GPU accelerated discrete adjoint meshfree solvers for aerodynamic optimisation

Thank you very much!