
Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

On the Performance of GPU Accelerated Meshfree Solvers in

Fortran, C++, Python, and Julia

Nischay Ram Mamidi1, Kumar Prasun1, Dhruv Saxena1, Anil Nemili1

Bharatkumar Sharma2, SM Deshpande3

1Birla Institute of Technology and Science - Pilani, Hyderabad Campus, India

2NVIDIA

3524, Tata Nagar, Bengaluru, India (Formerly at JNCASR, Bengaluru)

NVIDIA GPU Technology Conference - 2021

April 12 - 16, 2021

1 / 20



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Outline

Introduction

GPU Accelerated Meshfree Solver

Numerical Results

Conclusions & Future Work

2 / 20



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Introduction

• Numerical simulations of fluid flow problems are computationally intensive

• For example, accurate capture of flow features around aircraft wings, flight

vehicles, etc., do require simulations on fine grids with millions of grid points

• Existing parallel codes in CFD: CPU based (MPI) or GPU based (CUDA)

• Traditionally these codes are written in Fortran/C/C++

3 / 20



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Introduction

• Alternatively, we can employ modern languages like Python or Julia

Advantages:

• Architecture Independent. Capable of running on any HPC platform

• Easy to maintain, high code readability, few lines of code

• New developers can quickly join and work on the code

Examples of Petascale parallel codes based on Python and Julia:

• PyFR - A compressible Navier-Stokes solver for unstructured grids (Python) (Witherden-2014)

• Celeste - An astronomical image analysis tool (Julia) (Regier-2018)

Objective of this research:

• Develop GPU accelerated meshfree solvers for inviscid compressible flows

• Written in Fortran/C++/Python/Julia

• Assess their relative performance

4 / 20



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Introduction

• Alternatively, we can employ modern languages like Python or Julia

Advantages:

• Architecture Independent. Capable of running on any HPC platform

• Easy to maintain, high code readability, few lines of code

• New developers can quickly join and work on the code

Examples of Petascale parallel codes based on Python and Julia:

• PyFR - A compressible Navier-Stokes solver for unstructured grids (Python) (Witherden-2014)

• Celeste - An astronomical image analysis tool (Julia) (Regier-2018)

Objective of this research:

• Develop GPU accelerated meshfree solvers for inviscid compressible flows

• Written in Fortran/C++/Python/Julia

• Assess their relative performance

4 / 20



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Meshfree q-LSKUM Solver for 2D Euler Equations

Least Squares Kinetic Upwind Method (LSKUM):

• Euler equations: Govern the inviscid compressible fluid flows

∂U

∂t
+

∂G

∂x
+

∂H

∂y
= 0

• Introduce upwinding using Kinetic Flux Vector Splitting (KFVS) (Mandal-1989)

∂U

∂t
+

∂G+

∂x
+

∂G−

∂x
+

∂H+

∂y
+

∂H−

∂y
= 0

• Basic idea of LSKUM: Approximate the spatial derivatives using Least Squares (Ghosh-1995)

• Input: Set of points and their neighbours (known as connectivity)

• Operates on structured, unstructured, cartesian, chimera point distributions, etc.

• Spatial accuracy: Using defect correction method + inner iterations, along with q-variables

(q-LSKUM) (Deshpande-2002)

• Time accuracy: Strong Stability Preserving Runge-Kutta Schemes (SSP-RK3)

5 / 20



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Serial Pseudo Code

Algorithm 1: Meshfree solver based on q-LSKUM

subroutine q-LSKUM
call preprocessor()

for n← 1 to n ≤ N do
call timestep()

for rk ← 1 to 4 do
call q variables()

call q derivatives()

call flux residual()

call state update(rk)

end

call residue()
end

call postprocessor()
end subroutine

6 / 20



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

GPU Accelerated Pseudo Code

Algorithm 2: GPU Accelerated Meshfree solver based on q-LSKUM

subroutine q-LSKUM:

call preprocessor()

cudaHostToDevice(CPU data, GPU data)

for n← 1 to n ≤ N do

Compute kernel ≪ grid, block ≫ timestep

for rk ← 1 to 4 do

Compute kernel ≪ grid, block ≫ q variables

Compute kernel ≪ grid, block ≫ q derivatives

Compute kernel ≪ grid, block ≫ flux residual

Compute kernel ≪ grid, block ≫ state update(rk)

end

end

cudaDeviceToHost(GPU data, CPU data)

call postprocessor()

end subroutine

7 / 20



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Numerical Results

Test Case Details:

• Inviscid flow over a NACA 0012 airfoil

• Ma = 0.63 and AoA = 2o

• Seven levels of point distributions: 0.625M to 40M

Language and Compiler Specifications

• Fortran 90 and C++ - NVIDIA HPC SDK 21.2

• Python 3.8.6 - Numba 0.53.0 and CUDA Toolkit 11.0.221

• Julia 1.5.3 - CUDA.jl 2.4.1

Node Configuration

• Serial runs: AMD EPYCTM 7542 (2x32 cores) with 256 GB RAM

• GPU runs: NVIDIA Tesla V100 32GB (PCIe)

8 / 20



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Performance of the naive GPU codes

Level No. of points Fortran C++ Python Julia

RDP × 10−8 (Lower is better)

1 0.625M 14.4090 5.1200 9.4183 7.3120

2 1.25M 12.8570 4.8800 8.9765 6.2160

3 2.5M 11.9100 4.6000 8.7008 5.4800

4 5M 11.5620 4.6673 8.6080 5.2800

5 10M 11.3640 4.5800 8.6409 5.0600

6 20M 11.3130 4.4096 7.9278 4.9650

7 40M 12.2720 4.2573 7.8805 4.9350

Comparison of the RDP values based on naive GPU codes.

• RDP = Total wall clock time in seconds/No. of iterations/No. of points

• Number of iterations = 1000

• Optimal number of threads per block = 64

9 / 20



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Performance of the naive GPU codes

Speedup of the GPU codes Relative Speedup of the GPU codes

1 2 3 4 5 6 7

Point distribution level

100

150

200

250

300

350

400

450

500

550

S
p

e
e

d
u

p

Fortran

C++

Python

Julia

1 2 3 4 5 6 7

Point distribution level

1

1.5

2

2.5

3

3.5

R
e

la
ti

v
e

 S
p

e
e

d
u

p

C++

Python

Julia

• Speedup of the GPU codes = (RDP of the serial Fortran code) / (RDP of the GPU codes)

• Relative speedup = (RDP of the Fortran GPU code) /(RDP of C++/Python/Julia GPU codes)

10 / 20



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Naive GPU codes: Relative run-time of the Kernels

No.of points Code q variables q derivatives flux residual state update

Fortran 0.50% 25.73% 72.67% 0.82%

0.625M C++ 0.77% 44.70% 50.51% 1.87%

Coarse Python 0.67% 37.48% 59.73% 1.47%

Julia 1.24% 24.52% 71.71% 1.89%

Fortran 0.42% 25.60% 72.95% 0.74%

5M C++ 0.80% 47.34% 47.68% 1.84%

Medium Python 0.60% 38.43% 59.10% 1.38%

Julia 1.37% 24.40% 71.77% 1.85%

Fortran 0.41% 25.38% 73.21% 0.74%

40M C++ 0.81% 42.27% 52.94% 1.85%

Fine Python 0.58% 38.19% 59.40% 1.35%

Julia 1.32% 24.12% 72.11% 1.85%

Run-time analysis of the kernels on the finest point distribution.

11 / 20



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Naive GPU codes: Performance metrics of the kernel - flux residual

No.of points Code SM Memory Achieved

utilisation utilisation occupancy

Fortran 11.56 21.27 3.08

0.625M C++ 43.16 10.41 11.76

Coarse Python 29.55 25.95 18.03

Julia 26.23 18.28 16.54

Fortran 11.68 21.49 3.10

40M C++ 43.58 9.15 12.03

Fine Python 30.31 26.58 18.33

Julia 27.10 18.24 16.76

A comparison of various performance metrics on coarse and finest point distributions.

• SM utilisation: Total utilisation of compute sub-systems (memory load/store operations,

arithmetic and logic operations)

• Achieved occupancy: Total number of running warps / The theoretical maximum warps

12 / 20



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Enhancing the Computational Efficiency of GPU Codes

Optimisation techniques employed:

• The profile reports have shown that the kernel flux residual was latency bounded

• The kernel was split into smaller kernels. This resulted in reduced register pressure and thus

increased occupancy

• Kernel splitting also reduced the warp stalls and increased the overall memory utilisation

• To further improve the memory utilisation, uncoalesced global memory access and shared

memory bank conflicts were reduced

• These changes significantly increased the overall SM utilisation and FLOPS

13 / 20



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Optimised GPU codes: Performance metrics of the kernel - flux residual

Number Code SM Memory Achieved

of points utilisation utilisation occupancy

Fortran 11.68 21.49 3.10

Fortran 47.85− 48.68 41.85− 43.49 17.84− 18.10

C++ 43.58 9.15 12.03

40M C++ 56.41− 58.30 33.25− 34.70 17.81− 18.10

Fine Python 30.31 26.58 18.33

Python 54.29− 55.36 37.20− 37.50 17.87− 18.16

Julia 27.10 18.24 16.76

Julia 34.19− 34.42 26.98− 38.37 17.85− 24.02

A comparison of various performance metrics on the finest point distribution.

• Tabulated metrics in the red color correspond to optimised GPU codes

• Metrics in the black color are from the naive GPU codes

14 / 20



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Optimised GPU codes: Relative run-time of the Kernels

No.of points Code q variables q derivatives flux residual state update

Fortran 0.41% 25.38% 73.21% 0.74%

Fortran 1.08% 50.89% 45.40% 1.95%

C++ 0.81% 42.27% 52.94% 1.85%

40M C++ 0.89% 49.28% 45.48% 2.02%

Fine Python 0.58% 38.19% 59.40% 1.35%

Python 0.93% 45.99% 50.17% 2.18%

Julia 1.32% 24.12% 72.11% 1.85%

Julia 1.54% 27.66% 67.94% 2.17%

Run-time analysis of the kernels on the finest point distribution.

• Run-times in the red color correspond to optimised GPU codes

• Run-times in black color are for the naive GPU codes

15 / 20



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Optimised GPU codes: Performance metrics of the kernel - flux residual

Number Code TeraFLOPS (double precision)

of points

Fortran 0.5675

Fortran 2.3547− 2.4120

C++ 2.1664

40M C++ 2.7947− 2.8830

Fine Python 1.3491

Python 2.5794− 2.6425

Julia 1.3443

Julia 1.6862− 1.6990

Performance of GPU codes in terms of TFLOPS.

• Metrics in the black color are from the naive GPU codes

• Tabulated metrics in the red color correspond to optimised GPU codes

16 / 20



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Performance of the optimised GPU codes

No. of points Fortran C++ Python Julia

RDP × 10−8 (Lower is better)

0.625M 14.4090 5.1200 9.4183 7.3120

0.625M 9.4446 4.0671 6.1372 7.5040

5M 11.5620 4.6673 8.6080 5.2800

5M 4.5856 3.4616 5.2355 4.6900

40M 12.2720 4.2573 7.8805 4.9350

40M 4.3365 3.4100 5.1540 4.6825

• Entries in the red color show the RDP values based on optimised GPU codes

• Entries in the black color show the naive GPU codes RDP values

• Optimal number of threads per block: 64 (Naive codes), 128 (Optimised codes)

17 / 20



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Performance of the optimised GPU codes

Speedup of the naive GPU codes Speedup of the optimised GPU codes

1 2 3 4 5 6 7

Point distribution level

100

150

200

250

300

350

400

450

500

550

S
p

e
e

d
u

p

Fortran

C++

Python

Julia

1 2 3 4 5 6 7

Point distribution level

100

150

200

250

300

350

400

450

500

550

S
p

e
e

d
u

p

Fortran

C++

Python

Julia

• Speedup of the GPU codes = (RDP of the serial Fortran code) / (RDP of the GPU codes)

18 / 20



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Preliminary Investigations on A100 Card

Number Code RDP RDP Speedup Speedup Speedup

of points on V100 on A100 on V100 on A100 factor

Fortran 4.3365× 10−8 3.0838× 10−8 411.42 578.54 1.41

40M C++ 3.4100× 10−8 1.7582× 10−8 523.20 1014.74 1.94

Fine Python 5.1540× 10−8 2.6415× 10−8 346.16 675.42 1.95

Julia 4.6825× 10−8 2.9000× 10−8 381.02 615.21 1.61

Run-time comparisons of optimised GPU codes on V100 and A100 cards.

• Speedup factor of the GPU codes = RDP value on V100 / RDP value on A100

19 / 20



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Conclusions & Future Work

Conclusions:

• Developed GPU accelerated meshfree compressible flow solvers in Fortran/C++/Python/Julia

• Benchmarked and analysed the performance of kernels

• The RDP values have shown that the C++ GPU code has exhibited superior performance

Future Work:

• Optimise other computationally intensive kernels (eg: q derivatives)

• Extension to multi GPUs and three dimensional flows

• GPU accelerated discrete adjoint meshfree solvers for aerodynamic optimisation

Thank you very much!

20 / 20



Introduction GPU Accelerated Meshfree Solver Numerical Results Conclusions & Future Work

Conclusions & Future Work

Conclusions:

• Developed GPU accelerated meshfree compressible flow solvers in Fortran/C++/Python/Julia

• Benchmarked and analysed the performance of kernels

• The RDP values have shown that the C++ GPU code has exhibited superior performance

Future Work:

• Optimise other computationally intensive kernels (eg: q derivatives)

• Extension to multi GPUs and three dimensional flows

• GPU accelerated discrete adjoint meshfree solvers for aerodynamic optimisation

Thank you very much!

20 / 20


	Introduction
	GPU Accelerated Meshfree Solver
	Numerical Results
	Conclusions & Future Work 

