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In this paper, we present the development of Python, Julia and Fortran based

GPU accelerated meshfree solvers for two-dimensional inviscid compressible flows.
The meshfree solver is based on the Least Squares Kinetic Upwind Method (LSKUM).
The programming interface, Compute Unified Device Architecture (CUDA) is used to
perform the calculations on the GPU device. To assess the computational efficiency of
the GPU solvers and to compare their relative performance, benchmark calculations
are performed on several levels of point distribution. To analyse the overall perfor-
mance of the GPU solvers, a detailed investigation of the invoked kernels is presented.
For computationally intensive kernel, an analysis of various performance metrics such
as utilisation of streaming multiprocessors and memory, branch efficiency, occupancy
and arithmetic intensity is presented.

I. Introduction
The Least Squares Kinetic Upwind Method (LSKUM) [1] is a meshfree solver for the numerical solution

of Euler and Navier-Stokes equations of the compressible fluid flows. Over the years, LSKUM based meshfree
solvers developed at Defence Research and Development Laboratory (DRDL) and National Aerospace
Laboratories (NAL) have been continuously used to compute flows around a wide variety of configurations.

The meshfree solvers in these Laboratories are written in traditional programming languages like
C, C + + and Fortran. Porting these legacy codes to HPC platforms with rapidly evolving hardware is
challenging as the developers need to tune their codes frequently. One way to circumvent this problem is
to employ modern languages such as Python or Julia. These languages are known to be architecture
independent with an added advantage of easy code maintenance and readability. Furthermore, Julia
is designed for high performance computing of numerically intensive algorithms. Recently, a hybrid
parallel CFD solver called PyFR [2] has been developed in Python. This code has been successfully
tested on massively parallel modern hardware platforms scaling to Petaflops. In other works, a par-
allel code, Celeste [3], written in Julia is used to perform Petascale operations for astronomical applications.

It is therefore worthwhile to pursue research in the direction of developing hybrid meshfree solvers using
Python and Julia. As a first step towards this objective, in this paper, we present the development of
Python and Julia based serial and GPU accelerated versions of meshfree solvers for two-dimensional
inviscid compressible flows. The computational efficiency of these solvers is compared with equivalent
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Fortran based serial and GPU solvers. Furthermore, a detailed analysis of various performance metrics is
presented.

II. Performance Analysis of Serial and GPU Meshfree Solvers
In this section, we present numerical results to assess the computational efficiency of the Python, Julia

and Fortran based GPU accelerated meshfree Euler solvers. Note that in all versions of the meshfree solver,
second order accuracy in space is achieved by q-LSKUM [4]. The temporal term is discretised with the
four stage strong stability preserving Runge-Kutta third order accurate scheme [5]. All computations are
performed with double precision on a Linux workstation, whose configuration details are presented in Table 1.
Table 2 shows a list of compilers, flags and other specifications used to perform simulations. The Python
GPU code uses Numba 0.44.1 [6] and NumPy 1.16.4 [7], while Julia GPU code uses libraries such as
CUDAnative 2.2.0 [8] and CuArrays 1.0.2.

The test case under investigation is the inviscid fluid flow simulation around the NACA 0012 air-
foil at Mach number, M = 0.85 and angle of attack, AoA = 1o . For the benchmarks, six levels of uniformly
refined point distributions are used. The coarsest distribution consists of 9, 600 points, while the finest
distribution consists of 98, 30, 400 points. Note that further point refinement is not pursued as the desired
memory requirements exceed the available GPU resources.

CPU GPU

Model Intel Xeon E5 − 2698 v4 Nvidia Quadro M5000
Cores 40 (20 × 2) 2048
Core Frequency 2.20 GHz 1.038 GHz
Global Memory 128 GB 8 GB
L2 Cache 5 MB 2 MB

Table 1 Configuration of the workstation used to perform simulations.

Python Julia Fortran

Version 3.6.8 1.1.1 Fortran 90

Compiler Intel LLVM PGI

Compiler version 2019.3 6.0+ patches 18.10

Compiler flags -O3 -O3 –check-bounds=no -O3 -Mcuda = rdc

CUDA version 10.0.130 10.0.130 10.0.130

NVIDIA driver 430.34 430.34 430.34

Table 2 List of compilers, optimisation flags and other specifications used to execute the GPU codes.
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A. RDP Comparison of Serial Meshfree Solvers
To measure the performance of meshfree solvers, we adopt a cost metric called the Rate of Data Processing

(RDP). The RDP of a meshfree code can be defined as the total wall clock time in seconds per iteration
per point. The RDP values based on a single core CPU calculations are listed in Table 3. Compared to the
Fortran code, the performance of the Python code is observed to be very poor as its RDP values are larger
by an order of O

(
102
)
. This behaviour is anticipated as pure Python is an interpreted and dynamically

typed language while Fortran is a compiled and statically typed language. On the other hand, while Julia
is also a dynamically typed language, its compiler can statically type functions through multiple dispatch.
Due to this, the RDP values based on Julia are better than Python but its performance is still slower than
Fortran. In the case of Fortran code, the RDP values decrease continuously with increase in the size of
point distribution. The RDP based on the Python code decreases upto third level and then increases. On
the other hand, the RDP values from the Julia code increase with successive point refinement. A possible
explanation for this behaviour could be that the number of live Python or Julia objects increases with the
size of the point distribution. A significant amount of CPU time is spent in managing the memory allocation
of these objects. Note that these objects are managed by an interface called Garbage Collector [9].

Number of points Python serial code Julia serial code Fortran serial code

160 × 60 = 9600 5.1525 × 10−3 6.9167 × 10−5 3.4612 × 10−5

320 × 120 = 38400 3.9926 × 10−3 7.5807 × 10−5 2.6630 × 10−5

640 × 240 = 153600 3.4258 × 10−3 7.6146 × 10−5 2.1607 × 10−5

1280 × 480 = 614400 3.9027 × 10−3 9.6940 × 10−5 1.8972 × 10−5

2560 × 960 = 2457600 4.5819 × 10−3 14.7761 × 10−5 1.8467 × 10−5

5120 × 1920 = 9830400 4.6491 × 10−3 19.3568 × 10−5 1.7929 × 10−5

Table 3 Comparison of the RDP values for a single core CPU computation.

B. RDP Comparison of GPU Accelerated Meshfree Solvers
It is well-known that the overall performance of a GPU accelerated code depends on the number of

threads employed per block. To find the optimal number of threads for the present algorithm and the hardware,
we perform numerical experiments with 8, 16, 32, 64, 128 and 256 threads per block. Note that with 512 and
1024 threads, the simulations crashed due to lack of sufficient thread memory. Infact, a similar behaviour is
observed with the Julia code while using 256 threads. Figures 1 to 3 show the variation of RDP values with
the number of threads per block. These plots clearly show that for all levels of point distribution, 32 threads
per block yields the best performance.

Table 4 shows a comparison of optimal RDP values based on the GPU accelerated meshfree
codes. The tabulated values clearly show that the Julia GPU code shows better performance on the first two
levels of distribution. On subsequent point distributions, Fortran GPU code exhibits superior performance.
Perhaps, this could be due to better utilisation of streaming multiprocessors (SM) by the respective GPU
codes on these levels. As far as the Python GPU code is concerned, a very significant improvement in its
performance is observed over its serial version. In fact, on medium to fine levels of point distribution, its RDP
values are comparable to the values obtained from the Fortran version. On the other hand, the performance
of Julia GPU code is observed to be slower on medium to finer distributions. This could be due to the
current implementation of the Julia code, which makes more calls to the global memory and thus increasing
the latency significantly.
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Fig. 1 Variation of Python GPU code RDP values with the number of threads per block.
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Fig. 2 Variation of Julia GPU code RDP values with the number of threads per block.
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Fig. 3 Variation of Fortran GPU code RDP values with the number of threads per block.
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Number of points Python GPU code Julia GPU code Fortran GPU code

9600 29.5396 × 10−7 15.0392 × 10−7 18.3894 × 10−7

38400 13.5419 × 10−7 11.9791 × 10−7 12.2463 × 10−7

153600 9.5524 × 10−7 10.9375 × 10−7 9.1964 × 10−7

614400 8.1265 × 10−7 10.3841 × 10−7 7.3291 × 10−7

2457600 7.7198 × 10−7 10.4166 × 10−7 6.3746 × 10−7

9830400 7.6221 × 10−7 11.0880 × 10−7 5.7493 × 10−7

Table 4 Comparison of the RDP values based on the GPU accelerated meshfree codes.

C. Relative Speedup of the GPU Accelerated Meshfree Solvers
In order to assess the overall performance enhancement due to GPU computing, we define the speedup as

the ratio of the RDP based on a single core CPU simulation to the RDP obtained using the GPU accelerated
code with optimal number of threads per block. Table 5 shows the relative speedup achieved by the GPU
codes. It can be observed that continuous point refinement enhanced the utilisation of GPU computing power
and thus increased the speedup. Note that a reasonable explanation for massive speedup achieved by the
Python GPU code is due to a very poor performance of its serial code.

Number of points Python GPU code Julia GPU code Fortran GPU code

9600 1744.26 46.11 18.82
38400 2948.33 63.27 21.74
153600 3586.32 69.61 23.49
614400 4802.43 93.35 25.88
2457600 5935.25 141.85 28.97
9830400 6099.50 174.57 31.18

Table 5 Relative speedup of GPU accelerated codes over a single core CPU computation.

D. Performance Analysis of Various Kernels
To analyse the overall performance of the GPU accelerated meshfree solvers, it is imperative to investigate

the kernels employed in the solvers. Following is the list of kernels invoked by all versions of the meshfree
solvers. Note that these kernels are invoked in the order they are written below.

• host → device
• q_variables
• q_derivatives
• flux_residual
• state_update
• residue
• device → host
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Here, the kernel q_variables transforms the primitive variables to the entropy variables. The kernel
q_derivatives computes the spatial derivatives of the entropy variables [4]. The derivatives are then used
in the defect correction method [10] for second order accuracy of the spatial derivatives in the governing fluid
flow equations. To measure the performance metrics of the kernels, NVIDIA visual profiler Nsight Compute
is used to profile the numerical simulations on all levels of point distribution. Table 6 shows the relative run
time incurred by invoking the kernels. Note that the relative run-time of a kernel is defined as the ratio of the
kernel execution time to the overall time taken for the complete simulation. This profile data is generated by
fixing the number of iterations in the GPU solvers to 4, 000.

From this table it is clear that a very significant amount of run-time is taken by the flux_residual kernel,
followed by q_derivatives. In the case of Python and Fortran, the relative run-times of the kernel
flux_residual are decreasing continuously with continuous refinement in point distribution. On the other
hand, for Julia, the run-times are decreasing upto the fourth level and then increasing gradually. This
behaviour can be attributed to an increase in latency caused by more calls to the global memory. Note that the
kernel host → device copies the entire data structure from host to the device, while the kernel device
→ host fetches only the primitive vector for post processing. Therefore, the run-time incurred by the kernel
host → device is more than the time taken by device → host.

E. Performance Metrics of the Kernel: flux_residual
Table 7 displays several key performance metrics collected for the flux_residual kernel. These

metrics are obtained with the optimal number of threads per block. From the tabulated values, we can infer
that the Streaming Multiprocessors (SM) utilisation is higher for the Fortran GPU code. This could be due
to the present implementation, which masks latency more efficiently for Fortran, compared to Python and
Julia. In fact, it is also evident from lesser utilisation of memory by Fortran GPU code. It can also be
observed that the SM utilisation increases for all versions and then stagnates on fine distributions. This
stagnation is a direct consequence of the code creeping to the theoretical occupancy limit of 12.5%, possible
on the present GPU configuration. Note that the current limit for theoretical occupancy is an outcome of
the complexity of the flux_residual kernel, which requires more registers per thread. This results in a
decrease in the number of active warps per SM, which implies low theoretical occupancy.

With regard to the arithmetic intensity, on the coarsest distribution, the Python GPU solver is la-
tency bounded due to poor scheduling of the warps. This is due to the fact that the time taken for accessing
the memory supersedes the kernel computational time. As we refine the point distribution, the computations
become more intensive and the kernel becomes compute bounded.
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Relative run-time of the kernels

Code q_variables q_derivatives flux_residual state_update residue device↔ host

Number of points = 160 × 60

Python 0.2976% 2.9271% 95.8784% 0.8021% 0.0612% 0.0333%

Julia 0.4812% 5.3478% 92.6963% 1.3144% 0.0659% 0.1118%

Fortran 0.5675% 6.6615% 90.0145% 1.3028% 0.1145% 1.1508%

Number of points = 320 × 120

Python 0.5458% 5.0151% 92.8610% 1.4203% 0.0345% 0.1230%

Julia 0.7331% 6.0534% 91.4299% 1.6235% 0.0297% 0.1335%

Fortran 0.7544% 8.6123% 89.3245% 0.9963% 0.0947% 0.5478%

Number of points = 640 × 240

Python 0.8403% 6.1845% 90.7797% 1.9292% 0.0169% 0.2491%

Julia 0.8299% 5.9292% 91.3999% 1.6826% 0.0172% 0.1499%

Fortran 0.7159% 9.1141% 89.2249% 0.7962% 0.0788% 0.2347%

Number of points = 1280 × 480

Python 0.9807% 6.9040% 89.6051% 2.1973% 0.0101% 0.3025%

Julia 0.8607% 5.8395% 91.3628% 1.7155% 0.0125% 0.2181%

Fortran 0.7158% 9.4217% 88.9547% 0.7421% 0.0612% 0.1542%

Number of points = 2560 × 960

Python 1.0330% 7.1957% 89.1651% 2.3013% 0.0080% 0.2963%

Julia 0.8484% 5.8122% 91.5867% 1.5908% 0.0040% 0.1598%

Fortran 0.7124% 9.5386% 88.9217% 0.7312% 0.0417% 0.1171%

Number of points = 5120 × 1920

Python 1.0389% 7.3138% 88.7670% 2.4258% 0.0075% 0.4467%

Julia 0.7889% 5.3763% 91.8613% 1.5992% 0.0025% 0.3777%

Fortran 0.7216% 9.5832% 88.8417% 0.7346% 0.0371% 0.1245%

Table 6 Performance metrics of the kernels invoked by the GPU solvers.
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Code SM Memory Achieved Theoretical Branch Arithmetic
utilisation utilisation occupancy occupancy efficiency Intensity

Number of points = 160 × 60

Python 58.17% 23.54% 10.87% 12.50% 99.34% Latency-Bound

Julia 70.59% 40.85% 10.42% 12.50% 99.86% Compute-Bound

Fortran 79.90% 20.25% 10.89% 12.50% 97.94% Compute-Bound

Number of points = 320 × 120

Python 80.37% 35.26% 11.77% 12.50% 99.67% Compute-Bound

Julia 79.76% 49.61% 11.83% 12.50% 99.91% Compute-Bound

Fortran 85.89% 21.39% 11.62% 12.50% 99.10% Compute-Bound

Number of points = 640 × 240

Python 87.01% 41.53% 12.26% 12.50% 99.86% Compute-Bound

Julia 82.88% 53.48% 12.26% 12.50% 99.96% Compute-Bound

Fortran 91.00% 22.36% 12.21% 12.50% 99.66% Compute-Bound

Number of points = 1280 × 480

Python 88.02% 43.09% 12.36% 12.50% 99.94% Compute-Bound

Julia 83.05% 54.74% 12.39% 12.50% 99.99% Compute-Bound

Fortran 92.88% 22.73% 12.37% 12.50% 99.88% Compute-Bound

Number of points = 2560 × 960

Python 87.30% 42.73% 12.40% 12.50% 99.97% Compute-Bound

Julia 82.68% 54.96% 12.43% 12.50% 99.99% Compute-Bound

Fortran 93.35% 22.84% 12.42% 12.50% 99.95% Compute-Bound

Number of points = 5120 × 1920

Python 86.46% 42.12% 12.41% 12.50% 99.99% Compute-Bound

Julia 80.68% 46.40% 12.43% 12.50% 100.00% Compute-Bound

Fortran 93.32% 22.83% 12.43% 12.50% 99.98% Compute-Bound

Table 7 Performance metrics of the kernel flux_residual for optimal number of threads per block.

8



III. Conclusions
In summary, this paper presented GPU accelerated kinetic meshfree solvers for two-dimensional inviscid

compressible flows. The GPU codes are written in Python, Julia and Fortran languages and their
performances are analysed on six levels of point distribution, ranging from ten thousand to ten million
points. Numerical results have shown that the GPU codes achieved impressive speedups over their serial
counterparts. In terms of RDP, Julia has shown better performance on the coarse distributions. On medium
to fine distributions, Fortran exhibited superior performance. Overall, the performance of the Python GPU
code is comparable to that of Fortran.

The run-times incurred by various kernels employed in the GPU meshfree solvers was presented.
A detailed analysis of several key performance metrics of the computationally intensive kernel was presented.
These investigations have shown that all versions of GPU codes yielded similar performance in terms of
branch efficiency, occupancy and arithmetic intensity. For this kernel the SM utilisation is observed to be
higher for Fortran compared to Python and Julia. Furthermore, the memory utilisation of Fortran
solver was observed to be relatively lower.

Further investigations are required to enhance the computational efficiency of the solvers by reduc-
ing the memory access from global and local memory to the shared memory of the GPU. Work is going on in
this direction to improve the memory access. The long term aim is to develop LSKUM based Python and
Julia meshfree solvers that can be run on hybrid platforms such as GPGPUs and CPUs+GPUs. Research is
under progress to extend the present codes to hybrid parallel codes.
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