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ABSTRACT
The robustness and accuracy of the meshfree least squares kinetic upwind method (LSKUM) depends on
the condition number of the weighted least-squares matrix associated with the approximation of spatial
derivatives. In computational domains with a highly stretched or anisotropic distribution of points, the
least-squares matrix experiences high condition numbers, which results in either loss of accuracy or
code divergence. This paper presents the development of optimally weighted LSKUM with minimal
conditioning. The optimal weights that result in minimal condition numbers are found using discrete
adjoints based on algorithmic differentiation. Numerical results have shown that the LSKUM with
optimal weights yielded a more accurate solution than the current strategies for weights.
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1 Introduction
The Least Squares Kinetic Upwind Method (LSKUM) [1, 2] is a meshfree method that belongs to the
family of kinetic theory-based upwind schemes for the numerical solution of fluid flow problems. It
requires a distribution of points around the configuration of interest and a set of neighbours for each
point. In meshfree terminology, the point distribution is often known as the cloud of points, while the
set of neighbours is referred to as connectivity or stencil. The point cloud can be obtained from simple
or chimera grid generation algorithms, quadtree, or even advancing front methods [3]. The basic idea
of LSKUM is to first introduce upwinding in the governing Euler or Navier-Stokes equations through
the Kinetic Flux Vector Splitting (KFVS) scheme [4]. Later, the spatial derivatives at each point are
approximated using the least-squares or weighted least-squares principle with suitable connectivity in-
formation. Over the past two decades, the LSKUM based meshfree CFD codes have been successfully
used for computing flows around realistic configurations [5, 6, 7, 8].

A variant of LSKUM that is particularly interesting to us is the weighted LSKUM (W-LSKUM) [2].
In W-LSKUM, for each point in the domain, weights are assigned to its neighbours. The spatial deriva-
tives are then approximated using weighted least-squares. Central to the robustness of the meshfree
W-LSKUM solver is the well-conditioning of the weighted least-squares matrix. In general, the least-
squares matrix with uniform weights (wi = 1) experiences high condition numbers in highly stretched
or anisotropic distribution of points [5]. High condition numbers incur numerical instabilities, resulting
in either loss of accuracy or code divergence. To avoid code divergence due to ill-conditioning, various
strategies have been proposed regarding the choice of weights.

In one line of research [5, 8], the weights to the neighbours are chosen as wi = 1/d2
i . Here, di is the

Cartesian distance between the point of interest P0 and its neighbour Pi. Compared to wi = 1, this choice
of weights will result in minimum truncation error as they ensure the locality of the derivative. Fur-
thermore, on highly stretched point distributions, use of weights as a decreasing function of distance
reduces the condition numbers considerably. In another work [9], weights are chosen in such a way
that the least-squares matrix becomes diagonal or the upwind direction becomes an eigendirection of the
least-squares matrix. This approach results in a non-zero determinant of the least-squares matrix, which
prevents the code divergence. However, in both the approaches, the condition numbers thus obtained
may not be minimal and therefore the choice of weights are not optimal. The objective of this research
is to find the optimal distribution of weights that yield a robust and accurate W-LSKUM solver with
minimal conditioning.



2 Optimally Weighted Meshfree LSKUM
The Euler equations that govern the inviscid fluid flows can be obtained by taking moments of the
Boltzmann equation with the velocity distribution function being the Maxwellian. In two-dimensions,
these equations can be related in the inner product form as
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Here, U is the conserved vector, Gx and Gy are the flux vectors along the coordinate directions x and y
respectively. F is the Maxwellian velocity distribution function and Ψ is the moment function vector. v1
and v2 are the molecular velocities along the coordinates x and y, respectively. Using Courant-Issacson-
Rees (CIR) splitting of molecular velocities, an upwind scheme for the Boltzmann equation can be
constructed as
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Using the weighted least-squares principle, the first-order accurate approximations for the spatial deriva-
tives Fx and Fy at a point P0 are given by the solution of the linear system[
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Here, N (P0) is the set of neighbours or connectivity of the point P0. Taking Ψ - moments of eq. (2)
along with the formulae in eq. (3), we get the semi-discrete form of the meshfree weighted least-squares
kinetic upwind method (W-LSKUM) for 2D Euler equations, given by
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Here, Gx± and Gy± are the kinetic split fluxes [4] along x and y directions, respectively. The first-order
accurate least-squares formulae for the split flux derivatives are given by
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The derivatives of the split fluxes Gx± are evaluated using the split stencils N±
x (P0), defined by

N+
x (P0) = {Pi ∈ N (P0) | xPi − xP0 ≤ 0} , N−

x (P0) = {Pi ∈ N (P0) | xPi − xP0 ≥ 0} (6)

Similarly, the spatial derivatives of the split fluxes Gy± are evaluated using appropriate split stencils.
The state-update formula for the steady-state flow problems is constructed using the implicit LUSGS
algorithm and local time stepping. Second-order accurate spatial approximations is obtained using the
defect correction procedure with the entropy variables [2, 10].

The robustness of the meshfree W-LSKUM solver depends on the condition number of the weighted
least-squares matrix present in the linear system in eq. (3). Connectivity due to the highly anisotropic or
stretched distribution of points can make the least-squares matrix highly ill-conditioned. Large condi-
tion numbers may greatly amplify the effect of noise in ∑wi∆xi∆Gx±i , ∑wi∆yi∆Gx±i , ∑wi∆xi∆Gy±i and
∑wi∆yi∆Gy±i , leading to loss of accuracy in the approximation of split flux derivatives. The robustness
of the meshfree W-LSKUM solver can be enhanced if we can make the condition number of the least-
squares matrix close to unity by suitably choosing the weights.

In the present work, this objective is achieved by posing the minimisation of the condition number
as an optimal control problem. The objective function is defined as a function of the condition number
of the weighted least-squares matrix. The control variables are the weights assigned to the neighbours
of the point of interest. The constraints are that the weights must be positive. The optimisation problem
at a point P0 can be formulated as
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1
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)2
P0

subject to wi > 0, Pi ∈ N (P0)
(7)



Here, ∥A∥∥A−1∥ is the condition number and ∥A∥ is the Frobenius norm of the weighted least-squares
matrix associated with the point P0. The optimal distribution of weights that minimise the condition
number is found using a gradient descent algorithm. The sensitivities of the objective function with
respect to the weights are evaluated using the discrete adjoint approach based on algorithmic differenti-
ation (AD). Note that, at each point in the computational domain, optimal weights are required for the
full and split stencils.

3 Results and Discussion
The optimally weighted LSKUM solver is applied to the test case of a subsonic flow past the McDonnell
Douglas Aerospace (MDA) 30P-30N three-element high-lift configuration. Numerical simulations are
performed with a freestream Mach number, M∞ = 0.2, and angle of attack, α = 16o. The computational
domain consists of 52,997 points. The main airfoil has 696 points, while the slat and flap contain 298
points each.

Figure 1 shows a comparison of the condition numbers of the weighted least-squares matrix associ-
ated with the full stencil for all points in the computational domain. We observe that the optimal weights
resulted in minimal condition numbers compared to the weights wi = 1.0 and wi = 1/d2

i . Figure 2 shows
the contours of the Frobenius norm of the velocity gradient tensor. These plots show that the optimally
weighted LSKUM computes the velocity gradients more accurately and thus resulted in maximum en-
strophy, as shown in Table 1. An increase in enstrophy has generated more vorticity, which yielded more
lift. The surface pressure distribution plots in Figure 3 and coefficient of lift in Table 1 demonstrate the
ability of optimally weighted LSKUM in then accurate computation of Cp distribution and lift coeffi-
cient. The residue plot in Figure 4 shows that the optimal weights resulted in more convergence of the
flow solution.
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(a) Using weights wi = 1 (b) Using weights wi = 1/di
2 (c) Using optimal weights

Figure 1: Condition numbers of the weighted least-squares matrix associated with the full stencil.

(a) Using weights wi = 1 (b) Using weights wi = 1/di
2 (c) Using optimal weights

Figure 2: Contours of the Frobenius norm of the velocity gradient tensor based on W-LSKUM with
different weights.
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Figure 3: A comparison of the Cp-distribution based on W-LSKUM with different weights.
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Figure 4: Comparison of the residual history
based on W-LSKUM with different weights.

Weights Lift Enstrophy

1.0 3.6237 2.0523

1/d2 3.7807 2.7262
Optimal 3.9456 4.1087

Table 1: Lift coefficient and enstro-
phy based on W-LSKUM with dif-
ferent weights.
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