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ABSTRACT
This paper demonstrates the use of adjoint based shape sensitivities to make incremental changes in sta-
bility derivatives. For this purpose, the primal, tangent linear and adjoint meshfree least squares kinetic
upwind method (LSKUM) based solvers for 2D inviscid compressible flows are employed. The tangent
linear and adjoint LSKUM solvers are constructed using algorithmic differentiation techniques. Here,
the tangent solver computes the stability derivative and the adjoint solver yields the shape sensitivites of
stability derivative. Numerical results are shown for the MS0313 airfoil to make incremental changes in
the stability derivatives through shape perturbations.
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1 Introduction
Shape sensitivities of various stability derivatives are required in optimal aerodynamic design. They are
required in aerodynamic shape optimisation of full aircraft as there is a coupling between aerodynamic
efficiency and stability derivatives [1]; in this work, stability derivatives are constraints. Shape sensitivi-
ties are required for making incremental changes in the stability derivatives (which are important inputs
to control law design) by perturbing shapes. Further, they are also required in the design of high lift
configuration (HLD) where there is a need to shift the CL(α) curve, increase the slope of CL(α) and
change the shape to delay the stall so that higher CLmax can be obtained. Hence computation of stability
derivatives and their shape sensitivities are essential for optimal design. It is possible to perform shape
optimisation by imposing constraints on stability derivatives (such as CLα

, Cmα
, CNβ

etc.) or directly using
them as objective functions. In this research an attempt has been made to obtain incremental changes in
Cmα

through shape perturbations.

2 An adjoint approach for the shape sensitivities of stability derivatives
Consider the problem of finding the perturbed shapes that control (increase or decrease) the longitu-
dinal static stability derivative Cmα

in inviscid compressible flows. It amounts to a PDE constrained
optimisation problem. In the discrete form, the optimisation problem can be formulated as

max/min
XXX

J (UUU ,α,XXX) =
dCm

dα
, subject to UUU = G(UUU ,α,XXX) (1)

Here, J is the scalar objective function, which is a stability derivative. G represents a fixed point iteration
of the primal meshfree solver based on LSKUM [2] for the numerical solution of 2D Euler equations. UUU
is the converged flow solution, α is the angle of attack and XXX is the control vector. Assuming free node
parametric representation of the shape, the control vector XXX consists of the shape coordinates (x,y) that



define the geometry of the 2D configuration of interest.

In general, the shape sensitivities of a stability derivative can be evaluated in a two-step procedure.
In the first step, the objective function, which is a stability derivative, is computed using the tangent
linear solver. In the next step, an adjoint solver is constructed over the tangent solver to obtain the shape
sensitivities. In the present work, the tangent linear LSKUM solver is constructed by algorithmically
differentiating (AD) [3] the primal LSKUM solver. On the other hand, the adjoint LSKUM solver is
constructed by differentiating the tangent linear LSKUM solver. In summary, we require three solvers,
namely, the primal, tangent linear and adjoint LSKUM solvers. Typically, the run-time of the tangent
linear LSKUM solver is around a factor of 3 compared to the primal LSKUM solver, while the run-time
of the adjoint LSKUM solver that computes the shape sensitivities of stability derivatives is around a
factor of 15 compared to the primal solver.

The point-wise shape sensitivities obtained from the adjoint solver are non-smooth and contain high
frequency oscillations. In order to ensure that the perturbed shapes obtained at every optimisation cy-
cle remain smooth, the shape sensitivities must be smoothed. In the present work, the sensitivities are
smoothed using a two step procedure. In the first step, the sensitivities are smoothed using Sobolev
gradient smoothing [4, 5]. Our investigations have shown that the direct use of these sensitivities with
large step sizes in the gradient algorithm resulted in non-smooth shapes. To obtain smooth shapes, in
the second step, the sensitivities are again smoothed using the Savitzky-Golay filter [6].

During the optimisation, as the shape changes, the interior points near the airfoil may move closer
or farther to the airfoil geometry. It may also happen that the points fall inside the airfoil. As the interior
points move very close to the airfoil, its least-squares matrices may become ill-conditioned, leading to
inaccurate computation of spatial derivatives or code divergence. To prevent the ill-conditioning of the
least-squares matrices and the movement of points inside the geometry, at every optimisation cycle the
nearby interior points are moved according to the perturbation of their nearest shape points [5].

3 Results and discussion
The test case under investigation is the MS0313 airfoil with flow conditions corresponding to cruise at
M∞ = 0.35 and α = 40. The computational domain consists of 58,519 points, while the airfoil shape is
discretised with 1282 points.

For the optimisation problem, the imposed geometric constraints are that the chord length and the trail-
ing edge points of the airfoil are fixed. This implies that the y-coordinates of the rest of 1275 points on
the airfoil form the control vector. Figure 1 shows the normal components of the shape sensitivities of
(dCm/dα). We observe that the sensitivities are non-smooth and highly oscillatory. Using these sensitiv-
ities in the gradient algorithm will lead to non-smooth and unphysical shapes. In order to get smoothed
shapes, the raw sensitivities are smoothed using Sobolev gradient smoothing [4]. Figure 2 shows the
smoothed sensitivities. These plots show that the sensitivities are dominant in the neighbourhood of
mid-chord region of the airfoil on suction side. Depending on the choice of the objective function, the
airfoil shape is perturbed in the appropriate direction of sensitivities.

Figure 3(a) shows that the slope of Cm (α) curve for the perturbed shape decreases after a few cycles
of optimisation. That is, the pitching moment coefficient becomes more negative with the increase in
the angle of attack. Figure 3(b) shows the CL (α) curve for the baseline and perturbed shapes. Fig-
ure 4(a) shows that the slope of Cm (α) curve increases for the perturbed shape. Figure 4(b) shows the
corresponding CL (α) curve. Table 1 shows a comparison of the lift, pitching moment and longitudinal
stability derivative (dCm/dα) for the baseline and perturbed shapes at cruise conditions. Since we did
not impose any constraints on CL and Cm during the formulation of the optimisation problem, the force
coefficients for the perturbed shapes got deviated from the baseline shape values.
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Figure 1: Normal components of the shape sensitivities of dCm/dα for the baseline airfoil.
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Figure 2: Smoothed shape sensitivities of dCm/dα for the baseline airfoil.
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Figure 3: Minimise dCm/dα: Comparison of Cm (α) and CL (α) curves for the baseline and perturbed
shapes.
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Figure 4: Maximise dCm/dα: Comparison of Cm (α) and CL (α) curves for the baseline and perturbed
shapes.

Airfoil shape Cl Cm Cmα

Baseline 0.9741 −0.1045 −1.2081×10−3

Minimise Cmα
0.9411 −9.5192×10−2 −1.8888×10−3

Maximise Cmα
1.0860 −0.1263 −3.9181×10−4

Table 1: Comparison of the lift, pitching moment, and longitudinal stability derivative for the baseline
and perturbed shapes.
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